

MAGIX

Modelling and Analysis Generic Interface for eXternal numerical
codes

Thomas Möller
Manchester, 6th November 2012

● Why MAGIX ?

● Requirements, Installation

● Start MAGIX

● Registration process

● Optimization algorithms, error estimation, algorithm chain

● Examples

● Summary

Overview

● Many physical and chemical models depend on a set of parameters.

● The best description of observational data using a certain model requires the determination
of a parameter set that most closely reproduces the data, by some criteria.

● MAGIX modifies in an iterative procedure the parameter set to improve the quality of the
description, i.e. reducing the value of χ².

● MAGIX provides the best-fit parameters, within the framework of the model, to a particular
data set, including confidence intervals for the parameters.

● (M)any models can be plugged into MAGIX so as to explore their parameter space and find
the set of parameter values that best fits observational data.

● MAGIX contains so-called global optimizer which can be used to explore the whole
parameter space and find multiple minima of the χ² distribution without an initial guess.

● MAGIX program can be called by other programs (for example CASA)

Why MAGIX ?

Requirements for MAGIX:

● Python 2.6 (or later)

● Numpy 1.3 (or later)

● gfortran 4.3 (or later)

● scipy 0.9 (or later)

● matplotlib 0.99 (or later)

● subversion 1.6.6 (or later)

Requirements

Installation of MAGIX:

● There are NO precompiled releases of MAGIX.

● Download the install script

install_magix.sh

from our website

http://www.astro.uni-koeln.de/projects/schilke/MAGIX_NR

which download automatically the source code from the repository using subversion

● In order to install MAGIX simply start the following bash-script at the command prompt

./install_magix.sh

Installation

Working with MAGIX:

● start MAGIX with:

./magix_start.py <path>/io_control.xml

● get extended help

Documentation/MAGIX_Manual.pdf

● example runs for the different algorithms are located in the subdirectory

run/examples/

● To start the Levenberg-Marquardt example type

./magix_start.py run/examples/Levenberg-Marquardt/io_control.xml

at the command prompt.

Start MAGIX

XML files needed by MAGIX to work:

● The registration file, which contains a description of the structure of the input and output
file(s) of the external model program.

● The so-called instance file, which includes the names, initial values (and ranges) for all
model parameters. It works in conjunction with the registration file and indicates the model
parameters which should be optimized by MAGIX and which are hold fixed.

● The XML file containing settings for the import/export of experimental data, i.e. path(s) and
name(s) of the data file(s), format(s), range(s) etc.

● The so-called algorithm control file, defines which algorithm or algorithm sequence MAGIX
should use for the optimization together with the settings for each algorithm.

● The I/O control file, including the paths and file names of the aforementioned XML files.

Start MAGIXStart MAGIX

Registration process:

● MAGIX has to know the structure of the input and output file(s).

● How many input files have to be created?

● What's the name(s) and format (ASCII or FITS) of the input file(s)?

● Which parameter has to be written to which position within the input file(s) ?

● What's the format of each parameter (string, integer, float)?

● How many output files are created by the external model program and what's the name
and format of the each output file?

● How should MAGIX start the external model program, i.e. name and location of the
external model program.

● Is it possible to execute the external model program at the same time at the same
machine for more than one instances?

● As long as the structure of the input and output file(s) are not changed, the registration
process has to be done only once !

Registration

Example of a registration XML-file:

 <ModelProgramCall>
 <PathStartScript>Fit-Functions/ckRtm/magixRtmGreybody.py</PathStartScript>
 <ExeCommandStartScript>python magixRtmGreybody.py</ExeCommandStartScript>
 <ParallelizationPossible>Yes</ParallelizationPossible>
 <InputDataPath>data.dat</InputDataPath>
 </ModelProgramCall>

 <NumberInputFiles>1</NumberInputFiles>

 <InputFile>
 <InputFileName>in.txt</InputFileName>

 <NumberLines>5</NumberLines>

 <line group="false">
 <NumberParameterLine>1</NumberParameterLine>
 <Parameter group="false">
 <NumberReplicationParameter> </NumberReplicationParameter>
 <Name>sourceSize</Name>
 <Format>ES30.15</Format>
 <LeadingString></LeadingString>
 <TrailingString></TrailingString>
 </Parameter>
 </line>

 . . .

Registration

The corresponding input file “in.txt”:

 4.000000000000000E+01
 8.700000000000000E+02
 3.235219643279549E+01
 1.714226271972070E+00
 1.239041499402653E+04

Registration

Example of an instance XML-file:

 <SubSection>
 <NumberParameters>5</NumberParameters>

 <Parameter fit="false">
 <name>sourceSize</name>
 <value>40.0</value>
 <error> </error>
 <lowlimit>0</lowlimit>
 <uplimit>80</uplimit>
 </Parameter>

 <Parameter fit="false">
 <name>WaveRef</name>
 <value>870.0</value>
 <error> </error>
 <lowlimit>0</lowlimit>
 <uplimit>100</uplimit>
 </Parameter>
 . . .

Instance file

Example of experimental XML-file:

<ExpFiles>
 <Section>
 <SubSection>

 <NumberExpFiles>1</NumberExpFiles>

 <file>
 <FileNamesExpFiles>run/ckRtm_lm/experiment.dat</FileNamesExpFiles>
 <ImportFilter>ascii</ImportFilter>

 <NumberHeaderLines>0</NumberHeaderLines>
 <SeparatorColumns> </SeparatorColumns>

 <NumberColumnsX>1</NumberColumnsX>
 <NumberColumnsY>1</NumberColumnsY>

 <ErrorY>no</ErrorY>

 <NumberExpRanges>0</NumberExpRanges>
 </file>

 </SubSection>
 </Section>
</ExpFiles>

Experimental data

Example of a fit control XML-file:

<!-- set number of used algorithms -->
<NumberOfFitAlgorithms>1</NumberOfFitAlgorithms>

 <algorithm>
 <FitAlgorithm>Levenberg-Marquardt</FitAlgorithm>

 <!-- define method used for Levenberg-Marquardt-->
 <MethodLM>nr</MethodLM>

 <!-- define value of the variation -->
 <VariationValue>1e-5</VariationValue>

 <!-- set max. number of iterations -->
 <number_iterations>50</number_iterations>

 <!-- set max. number of processors -->
 <NumberProcessors>8</NumberProcessors>

 . . .

Fit control file

Available algorithms:

● Levenberg–Marquardt (local optimization, very fast)

● Simulated Annealing (local optimization, fast)

● Particle Swarm Optimization (global optimization, good convergence)

● Bees algorithm (global optimization, explore the landscape of the problem)

● Genetic algorithm (global optimization, good convergence)

● Nested Sampling (global optimization, good convergence)

● Interval Nested Sampling (global optimization, fast convergence)

● “Error estimation”

● Interface to make several algorithms included in the scipy package available

Algorithms

Example: Interval Nested Sampling algorithm:

Himmelblau function

f(x
1
, x

2
) = (x

1

2 + x
2
 – 11)2 + (x

1
 + x

2

2 – 7)2

with four identical minima.

Algorithms

Schematic diagram of error estimation module of MAGIX:

Error Estimation

Example of a histogram of distribution of parameter values after error estimation:
(Here, µ(θ

j
) indicates the mean value, σ(θ

j
) represents the standard deviation,

and “min” the value of the parameter θ
j
 of the best fit result).

Error Estimation

● each algorithm has advantages and disadvantages:

→ Combine algorithms !

● Simulated Annealing as well as the Levenberg-Marquardt algorithm requires starting
values of the parameters that are to be optimized, i.e. the user has to find a good fit by
hand before the application of these algorithms produces useful results.

● MAGIX includes the possibility to send the results of the optimization process performed
by a certain algorithm, to another optimization procedure through some other algorithm.

● Using a so-called “algorithm chain” the user can apply one of the swarm algorithms e.g.
the bees or Nested sampling algorithm to determine the starting values for the local
optimization algorithms.

● An algorithm chain is essential for using the error estimation algorithm!

Algorithm Chain

Algorithm Chain

Start

Example of a “chain”:

Algorithm Chain

1st algorithm: Bees

Start

Example of a “chain”:

Algorithm Chain

1st algorithm: Bees

2nd algorithm: Levenberg-Marquardt

Start

Example of a “chain”:

Algorithm Chain

1st algorithm: Bees

2nd algorithm: Levenberg-Marquardt

3rd algorithm: Error Estimation

Start

Example of a “chain”:

Algorithm Chain

1st algorithm: Bees

2nd algorithm: Levenberg-Marquardt

3rd algorithm: Error Estimation

Final result

Start

Chain

Example of a “chain”:

Algorithm Chain

1st algorithm: Bees

2nd algorithm: Levenberg-Marquardt

3rd algorithm: Error Estimation

Result 1

Start

Result 2 Result 3

Tree

Example of a “tree”:

Example of an algorithm chain:

● Fit of HIFI bands a) 4b and b) 5a toward SgrB2(M) with myXCLASS using an algorithm
chain consisting of the Genetic, the Simulated Annealing, and the error estimation
algorithm.

Examples

Comparison of algorithms:

Test function:

comparison

Comparison of algorithms:

Total cost (in function evaluations) for each test function for each global optimization
algorithm:

comparison

algorithm Rastrigin
function
χ²

limit
 = 1

Rosenbrock
function
χ²

limit
 = 4.e-3

Himmelblau
function
χ²

limit
 = 5.e-4

Bees 1220 14491 101664

PSO 1317 535 770

Genetic 241 533 1626

NS 4230 5080 8720

INS 20 1144 168

● MAGIX is a very helpful tool for modelling physical and chemical data using an arbitrary
external model program.

● It's a highly flexible toolbox where in principle any theoretical external model program
can be plugged in.

● MAGIX is able to explore the landscape of the χ² function without the knowledge of
starting values and calculates probabilities for the occurrence of minima.

● MAGIX can find multiple minima and give informations about confidence intervals for
the parameters

● MAGIX package contains the possibility to combine algorithms in a so-called algorithm
chain and make use of the advantages of the different algorithms included in the
package.

● If the external model program fulfils certain requirements MAGIX can run in a parallel
mode to speed up the computation.

For further informations see:

T. Möller et al., “Modeling and Analysis Generic Interface for eXternal numerical codes
(MAGIX)”, A&A (2012)

Summary

● MAGIX is a very helpful tool for modelling physical and chemical data using an arbitrary
external model program.

● It's a highly flexible toolbox where in principle any theoretical external model program
can be plugged in.

● MAGIX is able to explore the landscape of the χ² function without the knowledge of
starting values and calculates probabilities for the occurrence of minima.

● MAGIX can find multiple minima and give informations about confidence intervals for
the parameters

● MAGIX package contains the possibility to combine algorithms in a so-called algorithm
chain and make use of the advantages of the different algorithms included in the
package.

● If the external model program fulfils certain requirements MAGIX can run in a parallel
mode to speed up the computation.

For further informations see:

T. Möller et al., “Modeling and Analysis Generic Interface for eXternal numerical codes
(MAGIX)”, A&A (2012)

Summary

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

