parameter x;

MAGIX manual

T. Moller, D. Panoglou

April 8, 2020

TT T T T T T I T T T [rrIrT[rornrT
[| parameter x;

5 4 3 2 1

0

el

1

| iy |

range of parameter x,

2

5 4 3 2 A

parameter x;

Version 2.0.9

Copyright (©) 2009 - 2020,

0

1

I. Physikalisches Institut, Universitat zu Koéln

Produced for the CATS project

2

range of parameter x;

0.5

proportional weight

proportional weight

2 MAGIX manual
Contents
1 Introduction 3
1.1 Whatis MAGIX? e e e e e e e e 3
1.2 Howtousethismanual0 e e 3
1.3 Requirements L L e e e e e e e e e e e e e e e e e e e 4
1.4 Installation and usageo Ll e e e e e e e e e e 4
1.5 Examples oL e e e e e e e e e e e e e 5
1.6 Environmentvariables L Lo e e e e e e e e 5
1.6.1 General environment variables L. L Lo e 5
1.7 Modules of MAGIX L 0 e e e e e e e e e e e 7
1.8 Abort MAGIX o e 7
2 1I/0 control file 9
3 Experimental data 11
3.1 Generaltags Lo e e e e e e 11
3.2 Experimental datarangeso oL e e e e e e 11
3.3 XandYcolummns oL L e e e e e e e e e e e 12
3.4 Experimental data from ASCIIfiles e e e 12
3.5 Experimental data from FITS files 0 0 it e e 14
4 Model instance 16
4.1 Necessary tagsintheinstance L L e 16
5 Fit control file 19
5.1 General information L L e e e e e e e e e e e 19
5.1.1 Different parallelization techniques used by MAGIX 21
5.2 Tags CONCEIMING X2 v v v v e e e e e e e e e e 21
5.3 Tags available only for 2D and 3D plots of 1D functions y = f(x) andy=f(xy) 22
5.4 Tags required only for certain algorithms L L e 23
5.5 Optimization through an algorithm chain 00 .. 27
6 MAGIX Output files 29
6.1 Logfiles o o e e e e e e e e 29
6.2 Files for fit function comparison and x2 e 29
6.3 Plots L e e e e 32
7 Model registration 33
7.1 Scientific rationale L oL L e e e e e e 33
7.2 Organization of MAGIX o o e e e e e e e e e e e e 33
7.3 Start script L e e e e e e e e e e e e 34
7.3.1 Simple start scripts L L e e e e e e e e 35
7.3.2 Start scripts that include pre- and post-processing Lo Lo L oL 36
7.4 Input files of constant content or whose parameters are to be optimized 39
7.5 Examples of input files and their registration L0 oo oo 39
7.6 Functioncalls L e e 45
7.7 Parallelization L e e e e e 47
7.8 Line description L L L e e e e e e e e e e e e e e e e e e e 48
7.9 Replication of lines L L e e e e e e e e e e e e e 48
7.9.1 Basic properties of line replication L L0 Lo 48
7.9.2 Groups of lines nested innerly of other groups of lines 49

7.10Setting the replication number for lines L L oL e 50

MAGIX manual

7.10.1Properties of the replication number forlines 0.
7.10.2Specify the groups in the registrationfiles 0000
7.11Parameter description L L L L L e e e e e e e e e e e e e
7.11.1Main tags e
7.11.2Replication of parameters L oL e
7.12Parameter NAmMes h o e e e e e e e e e e e e e e e e e
7.12.1Parameters of the samename
7.12.2Special parameters Lo Lo e e e e e e e e e e e
7.12.3Special parameters for the experimental data settings
7.130utput file settings oL oL e e e e

8 Algorithms implemented

8.1 Levenberg-Marquardt algorithm (LM) o it e
8.2 Simulated Annealing (SA) L e e e e e e e e e
8.3 Nested Sampling algorithm (NS) e
8.4 Particle Swarm Optimization (PSO) L o e e e e e e
8.5 Beesalgorithm L e e e e e
8.6 Genetic algorithm (GA) o e e e e e e e
8.7 Markov chain Monte Carlo (MCMC) i i e et e e e e e e e e e e e e e e e
8.8 Interval-Nested-Sampling (INS) 0 e e
8.9 Errorestimation e e e e e e e e e

8.9.1 Error estimation using Fishermatrix o0 oo,

8.9.2 Error estimation using Markov chain Monte Carlo MCMC)

8.9.3 Error estimation using Interval Nested Sampling INS)
8.10Additional packages e e e

8.11COoNCIUSIONS o o e

A Appendix
Al Terminology L L e e e e e e e e e e e e
A.2 XML rules (that’s a noun, notaverb!) e e e e e e e e
A.2.1 General rules for the tags of the XML files

A.2.2 Parallel computation L. e e e e e

4 MAGIX manual

1 Introduction

1.1 What is MAGIX?

Modeling of astronomical observations requires specialized numerical codes and knowledge
about how to use them. MAGIX' provides a framework of an easy interface between existing
(registered) codes with an iterating engine that attempts to minimize deviations of the model
results from available observational data, constraining the values of the model parameters and
providing according error estimates.

MAGIX is a model optimizer developed under the framework of CATS, which is a german-
french-swedish project aimed to provide common tools and databases for astrophysical appli-
cations. (M)any models (and, in principle, not only astrophysical models) can be plugged into
MAGIX so as to explore their parameter space and find the set of parameter values that best
fits observational/experimental data.

MAGIX compiles with the data structures and reduction tools of ALMA. It aims to be a tool
that can be used with observations assembled with the ALMA interferometer, but can be used
even with non-astronomical data. MAGIX is under construction, but already operational. At
the moment MAGIX is a command line based program; therefore it can additionally be called
by other programs, e.g. CASA.

People willing to test it and provide us with feedback on this manual, as well on the
actual use of MAGIX, are welcome. In that case, please contact Peter Schilke via email
(schilke@ph1.uni-koeln.de).

1.2 How to use this manual

» To begin with, appendix §A.1 includes some basic terminology so that we all understand
what the other speaks of, as well as abbreviations referred to within the text, names of
software programs etc.

» If one wants to use MAGIX, it is recommended that one reads all of this first chapter (§1).
This will allow the user to get to know what MAGIX is about so as to see if s/he needs to
use it, why, and what s/he has to expect for as the result (§ 1.1), how to install MAGIX
(8§ 1.3) and how to make it work (§1.4).

» The second section describes the so-called I/O control file: It contains the paths and
names of the input XML files and the output log file (§2).

» The third section describes the so-called experimental file: It contains all settings for
importing experimental /observational data (§ 3).

» The fourth section describes the so-called instance: Within the instance file the (starting)
values and other properties for all parameters defined in the input file(s) of the external
model program are set (§4).

» The fifth section includes the description of the so-called fit control file: It contains the
settings and directives for the fit procedure that has to be followed by MAGIX (§5).

» The sixth section contains a detailed description of the output files created by MAGIX
during the fit process (§6).

» The seventh section describes the registration process, especially the so-called registra-
tion file: It describes the input and output file(s) being used by the external program,

IMAGIX home page: http://www.astro.uni-koeln.de/projects/schilke/MAGIX

mailto:schilke@ph1.uni-koeln.de
http://www.astro.uni-koeln.de/projects/schilke/MAGIX

MAGIX manual 5

>

giving names to the parameters contained in each file, and setting their type (string,
integer or real number) and the format with which they should be written (§7)

Finally, chapter § 8 gives short descriptions of the available algorithms, giving insight
of how they work and hints of how to make a better use of them in order to optimize
parameters of the model in question.

The above list includes references to the sections of this document, where the format of the
XML files is described, while the rules that should be followed when creating/editing such a
file are listed.

1.3

Requirements

The following packages are required:

>

vV vV.v vV vV VY

1.4

python 2.6 (or later) NOTE, Ubuntu users have to install the package python-dev as
well.

numpy 1.3 (or later)

scipy 0.9 (or later)

subversion (only for NR version)
pyfits 1.0 (or later)

gfortran 4.3 (or later)
matplotlib 0.99 (or later)

OpenMPI 1.5 (or later), only required for MPI version of MAGIX

Installation and usage

In order to install the SMP parallelized version of MAGIX, simply download the zip file from
CATS web site: https://www.astro.uni-koeln.de/wd-schilke/CATS/ (username magix,
password Magixdever), extract the zip file, go to the new created directory, and start
the installation script from the the command prompt:

./install.sh
In order to install the MPI parallelized version of MAGIX, add the MPI flag to the call of
the installation script, i.e.

./install.sh —--mpi

MAGIX can be started by typing

./magix_start.py path-to-your-files/io_control.xml

at the command prompt.
In order to get help, type

./magix_start.py —-—help

or read the readme.txt file in the installation directory.
If no screen output is desired (except error messages), type

./magix_start.py —-—quiet PathToYourFiles/io_control.xml

https://www.astro.uni-koeln.de/wd-schilke/CATS/install_magix.sh

6 MAGIX manual

followed by the path of the I/O control file (§2).
» If you do not want to plot the resulting fit function (or if you have problems with the
matplotlib package), type

./magix_start.py ——noplot PathToYourFiles/io_control.xml

followed by the path of the I/O control file (§2).

Please note, the --noplot option prevents the usage of the Internal Nested Sampling as
well as the Error Estimation algorithms.

» If you do not want to work with the interactive GUI of matplot1ib but create all plots and
save them into files, type

./magix_start.py —-plotsaveonly PathToYourFiles/io_control.xml

followed by the path of the I/O control file (§2).

» In order to stop MAGIX after the first call of the external model function, set the so-called
debug flag --debug. This flag can be very helpful to analyze problems occurring with the
call of the external model program (§7.3).

1.5 Examples

Note, the MAGIX installation includes the subdirectory run/examples/. This subdirectory con-
tains directories for every algorithm included in MAGIX (§ 8) where all xml-files as well as all
output files are stored in, which are created during a fit process:

For example, the directory run/examples/Levenberg-Marquardt/ contains all xml-files and
all output files, which are created during a fit process using the Levenberg-Marquardt algo-
rithm. In order to recreate the output files, type

./magix_start.py run/examples/Levenberg-Marquardt/io_control.xml

1.6 Environment variables

Before you use MAGIX, you might need to set some general environment variables (§ 1.6.1).
Those environment variables have to be set by typing the corresponding commands at the
command line (or adding the corresponding line in your ~/.bashrc file, if you want a permanent
setting for the corresponding environment variable).

Note, the following environment variables must not be changed during a fit process.

1.6.1 General environment variables

» MAGIXWorkingDir is the root directory of MAGIX. Typically, it is the directory where you
run the install_magix.sh script in order to install MAGIX (§1.4). But in fact, in order that
everything is functionable, the MAGIX root directory only needs to contain the directory
Modules and the script magic_start.py.

» During the fit process, MAGIX creates several subdirectories located in a temporary di-
rectory (temp) which is by default located in the root directory of MAGIX (it is created if it
doesn’t exist). By setting the environment variable MAGIXTempDirectory

export MAGIXTempDirectory="temp_somewhere_else"

MAGIX manual 7

create directories "P" (equal

create directory ——» to number of processors N: |——3»| working directory: "P"

Job_PID P=0,...,N-1) inside "job_PID"
™ A
I‘ :
% H
MAGIX run function call

Figure 1: Creation of temporary directories by MAGIX during the fit process. MAGIXTempDirectory is the
container of the job_p1D directory. Each run of MAGIX takes place in a job_p1ID directory. Each function
call (i.e. each call of the external model program by MAGIX) makes the model program run in one of the
p directories, which are located inside job_pPID.

the user can define another location of this temporary directory. It is strongly recom-
mended that the user should use a RAM drive, i.e., set the environment variable to

export MAGIXTempDirectory="/dev/shm/MAGIX/"

whenever possible. (The RAM drive is a common name for a temporary file storage facility
on many Unix-like operating systems. The usage of a RAM drive improve the performance
of MAGIX because the input and output file(s) of the external model programs are not
written to the hard drive but to the RAM which is orders of magnitude faster.)

The process of the creation of temporary directories is shown in fig. 1. For each run
of MAGIX, one directory is created inside MAGIxTempDirectory. The name of the newly
created directory is the string job_ with a number appended. This number corresponds
to the extended PID?. Inner directories are created inside job_pID, one for each thread,
i.e. one for each processor working on the given optimization process (see also a represen-
tation of the directory tree in fig. 6). The same procedure is followed when parallelization
is not allowed (<ParallelizationPossible> (§7.7) is set to no); in that case there will be
only one thread and job_pID will contain one directory named 0.

A detailed description of the management of MAGIX can be found in (§7.7).

» In case of programs that deal with large data arrays, the error message segmentation error
(or speicherzugriffsfehler, in German) may occur. In that case, the user has to unlimit
the size of stack, using the following command:

ulimit -s unlimited

If the user activates the parallelization options (§7.7) of MAGIX the size of the OMP stack
has to be increased as well by writing the following command:

export OMP_STACKSIZE=' 999M’

Here the size of the stack depends on the memory that is available. If oMP_STACKSIZE is
not set by the user, the default is 999m.

2Extended PID: Something like the commonly used internal PID, but it is unique in that it is possible to
distinguish all processes/threads that started at the same time - excluding all other processes - and at the same
time each of the selected processes is distinguished from one another.

It was essential to find a way to distinguish the temporary directories of MAGIX instances that start at the
same time, for cases that different MAGIX instances start on the same machine at the same time. This would be
particularly useful in cases that you want to speed up your task and get a fast solution for a problem, by running
different MAGIX instances for the same model and changing e.g. the starting value of some parameter (see example
in §8.1).

8 MAGIX manual

MainProgram experimental

(XML) file

instance (XML)

@ I:gn:f)n;iqgl-——)l ILoadEpriIeI I'——)| IGetParameterSetI I—

[riots]

registration
(XML) file

fit control
(XML} file

Figure 2: The flow chart of MAGIX. The flow chart of the FittingEngine module which actually performs
the optimization process is shown in fig. 3.

» For the plot for each iteration daemon, the user can define a time interval by using the
following command:

export MAGIXTimePlotIter="5000"

For further informations see (§5.3).

1.7 Modules of MAGIX

MAGIX is basically written in Python, with some algorithm packages written in FORTRAN.
MainProgram is the central module of MAGIX: it controls the whole process and calls all other
modules, managing the communication between them. All necessary python and FORTRAN
modules are located in the directory Modules within the root directory of MAGIX; do not rename,
move or remove this directory and any of its contents.

The flow chart of MAGIX is shown in fig. 2. It consists of four basic modules:

» LoadExpFile: contains subroutines for loading/reading experimental data files, using
appropriate filters depending on the format of the files (§3)

» FittingEngine: performs the fitting process using the algorithms specified in the fit
control file (§8)

» GetParameterSet: reads the model parameters from the model instance, which defines
model ranges, starting values and fit attributes (information about the fit attribute in

§4)

It is envisioned that the final version of MAGIX will also include a heuristics module that will
be able to choose the best algorithm or combination of algorithms, based on user-defined

priorities.
1.8 Abort MAGIX

In order to abort a MAGIX process, press “Crtl”+“z” (or “Crtl”+“c”) followed by the command

kill %1

MAGIX manual 9

Due to the cancellation of the MAGIX process, MAGIX is not able to clean up the temporary
directory (temp). As described in one of the next sections, MAGIX creates a temporary directory
for each MAGIX process (job). The name of the so-called job directory is composed of two
components: The first component is the phrase “(5ob_)” and the second component is a 8 digit
integer number, called job ID, e.g. (j0b_84376543). In order to free memory on the hard disk,
the user has to remove this job directory, manually.

10

MAGIX manual

2 I/0 control file

MAGIX requires a so-called I/0 control file which is located in the same directory where the file
magix_start.py is. If you want to use an I/O control file located somewhere else, type both the

path

This

and the file name of the I/O control file after the magix_start command. For example:

./magix_start.py PathToYourFiles/io_control_test.xml

command makes MAGIX run using the I/O control file io_control_test.xml located in

directory PathToYourFiles.
The I/0 control file contains the path and file name of the following files:

>

vV v vV

<experimental_data>: experimental (XML) file (§ 3); this tag may not point to an XML
file: it may point directly to a .dat or .fits file. In such a case MAGIX uses the default
settings for importing all data contained in an ASCII or FITS file, respectively.

<parameter_file>: instance XML (§4)
<fit_control>: fit control XML file (§5)
<fit_log>: log file of the fitting process (§6)

<model_description>: registration XML file (§7)

Sample 1: Example of an I/O control file

<?xml version="1.0" encoding="IS0-8859-1"7?>

<ioC
<t

ontrol>
itle>io control</title>

<description>paths and the file names used by MAGIX</description>

<P

</

athFilename>

<experimental_data>
<filename>test/TwoOscillators_RefFit_ R.xml</filename>
<description>path and file name of the experimental file</description>
</experimental_data>

<parameter_file>

<filename>test/parameters.xml</filename>

<description>path and file name of the instance file</description>
</parameter_file>

<fit_control>
<filename>test/Levenberg-Marquardt_Parameters.xml</filename>
<description>path and file name of the fit-control xml file</description>
</fit_control>

<fit_log>

<filename>test/fit.log</filename>

<description>path and file name of log file(s)</description>
</fit_log>

<model_description>

<filename>test/model_registration.xml</filename>

<description>path and file name of the registration file</description>
</model_description>

PathFilename>

</ioControl>

MAGIX manual 11

» The four XML files (experimental file, fit control files, instance and registration) are used
by MAGIX as input, therefore MAGIX will check their existence and will cancel if one of
these files does not exist.

» The fifth (non-XML) file specified in the tag <fit_log> needs not exist but the existence
of its path will be checked, since MAGIX will create three files in the given path. A non-
existence of this path will cancel MAGIX. If 1o0gs is the name given under the <filename>
tag and alg is the name of the algorithm chosen, then during the fitting process three log
files will be created:

— logs_alg: For every iteration step, this file contains a line with the running number
of the step, the value of x? at current step, and the current value of all parameters
that are being optimized. (For the Levenberg-Marquardt (§ 8.1) as well as for the
Simulated annealing algorithm (§8.2) additional informations are also printed.

— logs_alg.param: The contents of all input files - with the new optimized values of
the parameters to be fitted - of the external program are written in this file for every
iteration step.

— logs_alg.chi2: Similar to logs. For each function call of every iteration step, this
file contains a line with the value of y? and the value of all parameters that are being
optimized.

If a path precedes the string 1ogs in the <filename> tag, then the three new files will be
located in this path.

The string alg is every time substituted with the name of the algorithm chosen; i.e. if the
algorithm were PSO, then the three log files would be 1ogs_Pso, logs_Ps0O, logs_Pso. In
cases of algorithms that are used two or more times for a single MAGIX run, then the
string of the algorithm’s name will be followed by a serial number. For further details see

(§6).

» Note, the tags <title> and <description> are optional and are not read by MAGIX.

12 MAGIX manual

3 Experimental data

Before the experimental files can be imported, the XML file containing all settings required for
the import of the experimental data has to be loaded. More specifically, the experimental XML
file defines the number of experimental files, it describes and gives the path and file name for
each one of them.

3.1 General tags

All tags are necessary (except for <MinExpRange> and <MaxExpRange> when <NumberExpRanges>
is set to O, see §3.2).

» MAGIX is able to read files in a variety of experimental data formats. At the moment it can
load experimental data stored in ASCII, or FITS format. The user can select the format of
the experimental data file with the <ImportFilter> tag:

— If the user sets the content of the tag <ImportFilter> to automatic then MAGIX
chooses the correct import filter depending the ending of the file. For that setting to
function properly, the files have to end with either one of .dat and .fits for ASCII
and FITS files respectively.

— The user can also specify the correct import filter, by setting the tag <ImportFilter>
to ASCII or FITS.

» The names of the tags <ExpFiles>, <NumberExpFiles> etc. have to be written in the same
way as presented in the example above (file sample 1).

» The tag <file> must occur as many times as the number of experimental files defined in
the tag <NumberExpFiles>.

» Note, the order of the different experimental data files in the xml-file becomes important
if the external model program creates for each function call more than one output file.
MAGIX assumes that the first experimental data file is described by the first output file
of the model program etc. The order of the output files is defined in the registration file
(8§7). Therefore, the user has to declare the different experimental data files in the correct
order:

For example, the external model program creates two output files: The first file contains
the transmission as a function of frequency and the second file describes the velocity
as a function of frequency. If the first experimental data file (1) includes the measured
transmission as a function of frequency, and the second file (2) the corresponding data
for the velocity, the user has to declare file (1) first.

3.2 Experimental data ranges

» The number of ranges <NumberExpRanges> must always be given! If no range is desired
(i.e. all data contained in the file are to be included in the fitting process), then the number
of ranges must be set to O.

» If the number of ranges is set to O, then the tags <MinExpRange> and <MaxExpRange> need
not be given.

» If the user does not want to use all data (number of ranges > 0), then the tags <MinExpRange>
and <MaxExpRange> have to occur as many times as defined by <NumberExpRanges>.

MAGIX manual 13

» Note that the XML description of experimental data files for ASCII, and FITS files differ by
some tags.

3.3 X and Y columns

» The expression X column refers to an independent variable of the model. The X columns
are the columns of an array defining the X position of the experimental data point.

Example A: For a function f(x;, x5, x3), the number of X columns is 3; for a function f(x, xo),
the number of X columns is 2.

» The tag <NumberColumnsx> defines the number of columns (starting from the left-most
column) that belong to the X points of each experimental data file.

Example B: If the user wants to import an ASCII file containing 3D data, then <NumberColumnsx>
has to be set to 3. The first 3 columns will then define the X, Y and Z position.

» If the number of X columns is > 1, then the min and max of X columns of the ranges
have to be separated by the comma (,) character.

Example C: That’s for one X column:

<NumberColumnsX>1</NumberColumnsX>
<MinExpRange>0</MinExpRange>
<MaxExpRange>2000</MaxExpRange>

Example D: For three X columns:

<NumberColumnsX>3</NumberColumnsX>
<MinExpRange>0, 0, 0</MinExpRange>
<MaxExpRange>2000, 100, 20</MaxExpRange>

» The expression Y column refers to a dependent variable of the model. The <NumberColumnsy>
is only relevant for ASCII files (§ 3.4). For a given ASCII file, there can be defined exactly
one number of X columns and exactly one number of Y columns. This means that the in-
dependent variables have to be of equal number for all the dependent variables-functions.

Example E: Imagine an experimental file that includes the values of three independent vari-
ables, i.e. some 3D grid coordinates, x;, X2, x3, of two functions, say the temperature
T(x1, x2,x3) and the density n(x;, xz, x3). Then the number of X columns is 3 and
the number of dependent variables - Y columns - is 2.

3.4 Experimental data from ASCII files

Sample 2: XML structure to import experimental data from ASCII files

<?xml version="1.0" encoding="UTF-8"7?>
<ExpFiles>

<!-- define number of experimental data files ——>
<NumberExpFiles>1</NumberExpFiles>

<!-- define import settings for 1lst exp. data file ——>
<file>

14 MAGIX manual

<!-- define path and name of experimental data file ——>
<FileNamesExpFiles>examples/TwoOscillators_RefFit_R.dat</FileNamesExpFiles>

<!-- define import filter ——>
<ImportFilter>ascii</ImportFilter>

<!-- define number of header lines ——>
<NumberHeaderLines>0</NumberHeaderLines>

<!-- define character, which separate columns —-—>
<SeparatorColumns> </SeparatorColumns>

<!-- define number of X- and Y-columns ——>
<NumberColumnsX>1</NumberColumnsX>
<NumberColumnsY>1</NumberColumnsY>

<!—-— are errors included? ——>
<ErrorY>no</ErrorY>

<!-- define number and limits of ranges ——>
<NumberExpRanges>1</NumberExpRanges>
<MinExpRange>50</MinExpRange>
<MaxExpRange>1000</MaxExpRange>
</file>
</ExpFiles>

» The tag <NumberHeaderLines> defines the number of header lines that must be ignored at
import of an ASCII file.

» The user can specify a separator character (the tag <separatorColumns> defines the char-
acter that separates the columns from each other) for each file.

» For ASCII files, it may be necessary to specify the number of Y columns. This means that
for a given X position in the experimental data, you can specify several Y values.

Example A: You measured several spectra under different polarization angles at the same fre-
quency. A line in the corresponding ASCII file may look like:

100.12, 0.34134, 0.12341, 0.78901, 0.13361

Here, the first column describes the frequency and the other columns describe the
transmission at different polarization angles. The number of X columns is 1 and the
number of Y columns is 4.

» The tag <NumberColumnsy> defines the number of columns that belong to the Y points of
the experimental data. The Y columns have to be next to the X values!

Example B: If the user wants to import an ASCII file that contains values of four Y points at every
given X point then the tag <NumberColumnsY> has to be set to 4.

» If the error tag <Errory> is set to yes, then the columns containing the errors have to
be next to the Y columns. The number of these error columns have to be equal to the
number of Y columns given in the tag <NumberColumnsy>.

MAGIX manual

15

Note, the error values are used for the calculation of the y? value, see (§5.2).

Sample 3: Example of an ASCII file with 3 Y columns and the corresponding Y errors (Errorvy="YES")

NumberColumnsX=2

3.5 Experimental data from FITS files

NumberColumnsY=3
100.2313 20.6578 0.5846 40.1
102.2463 21.7548 0.5947 60.3
140.5671 21.9998 0.3450 93.0

3 <ErrorY> columns
0.020 0.451 0.017
0.039 0.230 0.092
0.091 0.561 0.005

Sample 4: XML structure to import experimental data from FITS files

<?xml version="1.0" encoding="UTF-8"7?>
<ExpFiles>

<!-- define number of experimental data files ——>
<NumberExpFiles>2</NumberExpFiles>

<!-- define import settings for 1st exp. data file ——>
<file>

<!-- define path and name of experimental data file ——>

<FileNamesExpFiles>one_parameter_ free/File3.fits</FileNamesExpFiles>

<!-- define import filter ——>
<ImportFilter>automatic</ImportFilter>

<!-— define number of HDU ——>
<NumberHDU>0</NumberHDU>

<!-- define number and limits of ranges ——>
<NumberExpRanges>1</NumberExpRanges>
<MinExpRange>0</MinExpRange>
<MaxExpRange>1000</MaxExpRange>

</file>
<!-- define import settings for 2nd exp. data file ——>
<file>

<!-- define path and name of experimental data file ——>

<FileNamesExpFiles>one_parameter_ free/Filed.fits</FileNamesExpFiles>

<!-- define import filter ——>
<ImportFilter>automatic</ImportFilter>

<!-- define number of HDU ——>
<NumberHDU>0</NumberHDU>

16 MAGIX manual

<!-- define number and limits of ranges ——>
<NumberExpRanges>2</NumberExpRanges>
<MinExpRange>0</MinExpRange>
<MaxExpRange>2000</MaxExpRange>
<MinExpRange>3130</MinExpRange>
<MaxExpRange>3200</MaxExpRange>
</file>
</ExpFiles>

» For FITS files, the number of Y columns is always 1!

» Although the <NumberColumnsx> tag is ignored (if it exists) when importing a FITS file, the
content of this tag is defined by the dimension of the FITS file. Thus, the ranges settings,
namely the way that the beginning and ending of each range are specified, have to be
given as in example D in §3.3, if the dimension of the FITS file is > 1.

» The user has to specify the Header Data Unit (HDU) that should be loaded for each FITS
file. This tag is needed only for FITS files.

» MAGIX distinguishes between image and table HDUs.

MAGIX manual 17

4 Model instance

The model instance is where the values of all parameters are set. This file also specifies whether
each parameter is one to be optimized. If yes, then the starting values, as well as the lower and
upper limits are also provided. If the parameter is not one to be optimized, then the lower and
upper limits are ignored.

In the rest of this section, the tags of the instance are described with reference to some
sample files. More examples are given in §7, together with the corresponding registration.

4.1 Necessary tags in the instance

Sample 5: Example of a parameter XML file

<?xml version="1.0" encoding="UTF-8"?>
<ModelParameters>

<!-- define total number of parameters ——>
<NumberParameters>8</NumberParameters>

<!-- define parameter "EpsilonInfinity" -—>
<Parameter fit="false">
<name>EpsilonInfinity</name>
<value>2.5</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>10</uplimit>
</Parameter>

<!-- define parameter "NumberOscillators" --—>
<Parameter fit="false">
<name>NumberOscillators</name>
<value>2</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>100</uplimit>
</Parameter>

<!-- define 1st parameter "EigenFrequency" -—>
<Parameter fit="false">
<name>EigenFrequency</name>
<value>150.0</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>1000</uplimit>
</Parameter>

<!-- define 1st parameter "PlasmaFrequency" -—>
<Parameter fit="true">
<name>PlasmaFrequency</name>
<value>200.0</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>1000</uplimit>

18

MAGIX manual

</Parameter>

<!-- define 1st parameter "Damping" -—>
<Parameter fit="true">
<name>Damping</name>
<value>10.0</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>1000</uplimit>
</Parameter>

<! --

define 2nd parameter "EigenFrequency" --—>

<Parameter fit="false">
<name>EigenFrequency</name>
<value>600.0</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>1000</uplimit>
</Parameter>

gl==

define 2nd parameter "PlasmaFrequency" -—>

<Parameter fit="true">
<name>PlasmaFrequency</name>
<value>400.0</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>1000</uplimit>
</Parameter>

Sy p—

define 2nd parameter "Damping" --—>

<Parameter fit="true">
<name>Damping</name>
<value>10.0</value>
<error> </error>
<lowlimit>0</lowlimit>
<uplimit>1000</uplimit>

</Parameter>

</ModelParameters>

» A parameter name should appear within the instance as many times as it appears in the
registration file, i.e. preferably once. Exceptions for this are the following cases:

» The

If a parameter belongs to a group, then its name should appear in the instance so

many times as the number of replications in this group.
If a parameter belongs to a group, its name can also be given to another parameter

that does not belong to this group.
If a parameter is declared more than once in the same input file (with double square

brackets appended in their name) or in different input files (with no double square
brackets appended), then it has to be declared only once in the instance, and that

is the first time it appears in the registration file.
If a parameter is declared more than once in the same input file (with no double

square brackets appended), then all occurrences of the name are considered to
belong to different parameters and have to exist also in the instance.

number of the model parameters defined in this file (<NumberParameters>) must be

MAGIX manual 19

equal to the number of all the parameters defined in the registration file (for all files and
all of their lines - no exact tag exists for the total number in the registration file, but it can
be derived summing up the contents of the NumberParameterLine of all lines and all files),
taking into account all existing replication of lines and parameters. (The total number of
parameters is altered by the group attribute and line replications; see §7.9).

» Each parameter is described inside the <pParameter> tag. There have to occur as many
<parameter> tags as defined in the tag <NumberParameters> in the same parameter XML
file.

» The names of the model parameters defined within the <name> tags must be identical
with the corresponding names as defined in the registration file of the given model (§ 7).
Otherwise the program stops. The only parameter names that may appear more than
once in an instance are those who belong to a group, if the replication number of that
group is > 1.

» Inorder to include a parameter in the fitting process, set the it attribute of the <parameter>
tag to true.
For example: In case you want to optimize the value of the parameter named as
EpsilonInfinity during the fit process:
<Parameter fit="true">
<name>EpsilonInfinity</name>
<value>3.0</value>
<error></error>
<lowlimit>0</lowlimit>
<uplimit>9999</uplimit>
</Parameter>

If the value of this parameter should not be optimized, then you have to set the fit
attribute to False:

<Parameter fit="false">

» The tags <uplimit> and <lowlimit> indicate the upper and the lower limits of the model
parameters, respectively. If the value of the model parameter runs out of this defined
range during the fit process, MAGIX will print out a warning message on the screen and
corrects the value of the parameter to the closest value within the range.

Note, the value of the tag <uplimit> has to be greater than the value of the tag <lowlimit>.
Please avoid using non-number specifications like “tinf’, because the range definitions
are essential for the swarm algorithms like Bees or PSO. Setting a parameter limit to
“+inf” leads to an dramatic enhancement of the computational effort.

» The <error> tag must occur for every parameter, even if empty. The content of this tag is
replaced by the error of the optimized parameter in the end.

20 MAGIX manual

5 Fit control file

Some general directives about how to select the algorithm(s) to use are given in § 8.11. The
module FittingEngine reads the parameters controlling the fitting process from the fit control
file, with the use of the function read_control_ file. The flow chart of this module is shown in
fig. 3.

iteration
<

max iterations

algorithm
<
max algorithms

log files temp

Figure 3: The flow chart of the FittingEngine module.

5.1 General information

Sample 6: Example of a fit control file (The expressions “<!--” and “-->“ indicate a remark line in a
xml-file.)

<?xml version="1.0" encoding="UTF-8"?>

<FitControl>
<!-- settings for fit process ——>
<!-- set number of used algorithms ——>

<NumberOfFitAlgorithms>1</NumberOfFitAlgorithms>

<algorithm>
<!-- define algorithm —-—>
<FitAlgorithm>bees</FitAlgorithm>

<!-- special settings for bees algorithm ——>
<!—-— BestSiteCounter (number of best sites) > 0 ——>
<BestSiteCounter>5</BestSiteCounter>

<!-- set max. number of iterations ——>
<number_iterations>10</number_ iterations>

<!-- set max. number of processors ——>
<NumberProcessors>8</NumberProcessors>

MAGIX manual 21

<!-- set path and name of host file —-—>
<MPIHostFileName>hostfile.txt</MPIHostFileName>

<!-- settings for chi"2 —-—>
<limit_of_chi2>0.001</limit_of_chi2>
<RenormalizedChi2>yes</RenormalizedChi2>
<DeterminationChi2>default</DeterminationChi2>
<SaveChi2>yes</SaveChi2>

<!-- set plot options ——>
<PlotAxisX>Frequency [Hz]</PlotAxisX>
<PlotAxisY>Intensity</PlotAxisY>
<PlotIteration>no</PlotIteration>
</algorithm>
</FitControl>

» The tag <NumberOfFitAlgorithms> defines the number of algorithms which should be
used within the fit process. A number greater than 1 defines a so-called algorithm chain
(see example 7).

» The settings for each algorithm are enclosed inside the <algorithm> tag. The tag has to
occur as many times as specified by the tag <NumberOfFitAalgorithms>.

» Each algorithm is described by the tags
<FitAlgorithm>, <number_iterations>, <NumberProcessors>,
(«<MPIHostFileName>),
<limit_of_ chi2>, <DeterminationChi2>, <SaveChi2>, <RenormalizedChi2>,
<PlotAxisX>, <PlotAxisY>, (<PlotAxisz>) and <PlotIteration>.
Depending on the chosen algorithm, a couple of additional tags have to be added (§5.4).

» The tag <Fitalgorithm> defines the algorithm that is used in the fit process. The content
of the <FitAlgorithm> tag has to be identical with one of the algorithm names (information
on the available algorithms in section §8; it does not matter if these words are written in
lower or upper case letters):

— levenberg-marquardt (§8.1),
— simulated-annealing (§8.2),
— nested-sampling (§8.3),

- pso (§8.4),

- bees (§8.5),

— genetic (§8.6),

- mcmc (§8.7),

— interval-ns (§8.8),

— errorestim_ins (§8.9).

— additionalpackages (§8.10),

» In order to deactivate the sorting of the chi2 log file the user can set the tag <sortFortranFlag>
to False. If this tag is not defined, the chi2 log file is sorted in ascending order.

» The tag <number_iterations> sets the number of iterations for each algorithm and has to
be an integer greater zero (I}, integer > 0).

» The tag <NumberProcessors> defines the number of processors used by MAGIX.

NOTE that a value > 1 can be used only for external model programs that allow paral-
lelized work (see tag <parallelizationPossible> of the registration XML file, §7.7).

22 MAGIX manual

» The tag <MPIHostFileName> defines the path and name of a so-called host file required
for the MPI parallelized version of MAGIX, see § 5.1.1. The host file contains names
of all of computers on which the MPI job will execute. For ease of execution, the user
should be sure that all of these computers have SSH access, and that an authorized keys
file is defined to avoid a password prompt for SSH. Additionally, the number of cores
which should be used for an MPI run on each machine can be limited by using the siots
command. For that purpose, the user has to extend the name of each machine by the
definition of cores.

meslam slots=16
lugal slots=8
anu slots=2

In the example described above, we use 16 cores on "meslam"”, 8 cores on "lugal" and two
cores on "anu'.

NOTE, if the total number of processors defined in the host file is smaller than the number
of processors defined by the tag <NumberProcessors> MAGIX will reduce this value.

For some supercomputers the user does not need to specify a host file, because there is
already a host file defined. In order to use a globally defined MPI host file, please insert
the phrase MPI_HOSTS into the tag <MPIHostFileName>.

5.1.1 Different parallelization techniques used by MAGIX

MAGIX supports two different parallelization techniques. On the one hand MAGIX provides
the algorithms in a SMP (Symmetric multiprocessing) parallelized version using OpenMP. A
symmetric multiprocessor system where two or more identical processors are connected to
a single, shared main memory, have full access to all I/O devices, and are controlled by a
single operating system instance that treats all processors equally. Modern multiprocessors
offers up to 32 different processor cores which can be used for a MAGIX run. This parallelization
technique is very fast, because all processors use the same memory, but the number of threads
is limited by the number of available cores on the current machine.

In contrast to the SMP parallelization, MPI (Message Passing Interface) is a standardized and
portable message-passing system, where one or more computers are connected in a so-called
cluster. MPI parallelization is somewhat slower than SMP, caused by the network, but it can be
used with an (in principle) unlimited number of cores. In order to use the MPI parallelization,
the user has to install the OpenMPI package on all computers in the cluster. Additionally,
the user has to provide a temp directory which is visible by all computers. Please note, by
using the environment variable MAGIXTempDirectory (see § 1.6.1), the user can define different
paths for the temp directory on each machine in the cluster. Depending on the external model
program, this makes the definition of a directory which is visible by all computers in the cluster
dispensable.

5.2 Tags concerning x>

MAGIX is able to fit the values of parameters, providing confidence intervals presented by the
value of y2.

» <DeterminationChi2>: Specifies the method that is used for the determination of y?. At
the moment the following options are included in MAGIX:

MAGIX manual 23

— default:

obs flt

Mz

1=1

where yOb represents the value of the experimental data at point i, and y‘:'t the

corresponding value of the fit function.
If the tag <DeterminationChi2> is set to default or difference, then the content of
the tag <savechi2> is read (yes/no, default value yes), which specifies whether the

difference yObs yf't is saved for all experimental points to a file (in the .chi2 log file).

S

Note, if the experimental data file(s) includes error values then the x? value is defined
obs yfllt 1] .

as follows:
N
Z; (Oerror)2
= 14

represents the error of the ith data point.

where of™"

» The tag <limit_of_chi2> specifies the value of xy? where the fitting process stops, i.e. if

5.3

the value of x? drops below this value the algorithm stops. The limit of y? should be a
real number > O.

<RenormalizedChi2> (yes/no, default value yes): specifies if MAGIX uses a re-normalized
value for the limit of x2. If you set the flag to yes or v, then MAGIX determines the limit
of xy? through the relation

Nexp

(Xlzimit)renom - Z (NY(i) : NpOintS(i) - Npar) ’ (Xlzimit)orig
i=1

where Negyp is the number of observation files Number_ExpFiles; Ny(i) represents the num-
ber of Y columns of observation file i; Npoints(i) indicates the number of observation data
points in the observation file i; Npar NumberParameters is the total number of all parame-

ters; (Xlzimit)orig is the original unmodified value of y2.

Tags available only for 2D and 3D plots of 1D functions y = f(x) and y = f(x, y)

The tags <Plotaxisx> and <PlotAxisYy> define the labels for the X and Y axis, respectively.
The tag <Plotaxisz> is used only for 3D plots.

The observed data and the fit function are plotted for each iteration step, if the tag
<PlotIteration> is set to yes (default value no). Please note, that this option starts
a daemon, which refreshes the plot window every 3 sec. By setting the environment
variable MAGIXTimePlotIter

export MAGIXTimePlotIter="5000"
the user can define another time interval (in milliseconds). If the time interval is to short,
the window is always gray and no function is plotted.

Please take into account, that the creation of the plot window requires time as well.

24

MAGIX manual

5.4 Tags required only for certain algorithms

» The following tag is only relevant when the algorithm chosen is NS, PSO, Genetic, MCMC,
INS or Bees:

— <BestSiteCounter>: Defines the number of best sites. MAGIX writes the results

(parameter set and value of the model function) of these sites to files. A number of
best sites greater than one, is especially useful when the y? function has multiple
minima, i.e. there is more than one best fit (description) of the experimental data.
Additionally, a number greater than one is useful when you want to use a so-called
algorithm chain, and the current algorithm (§5.5) is not the last one in the chain.

Imagine you use an algorithm chain (§ 5.5) of two algorithms: The first algorithm
is the Bees, with the best site counter set to 2, so MAGIX will search and find the
two best parameter sets. Then, if the next algorithm in the chain is the Levenberg-
Marquardt, it will find the best fitting parameter sets, starting from the two sites
found previously by the Bees. File sample 7 shows the fit control file of a similar
scheme with the best site counter for Bees set to 3.

» The following tags are only relevant when the algorithm chosen is Levenberg-Marquardt

(88.1):

- <Variationvalue> (var, real positive number > 0, typical value 107%): For each

iteration step the Levenberg-Marquardt algorithm has to determine the gradient of
the 2 function. Due to the fact that MAGIX can not determine the components of
the gradient analytically, MAGIX has to use a numerical approximation:

d . Ja+h)-f(x)
axif(x) a h '
where the variation h is defined by
h = x; - var.

Varying the value of <variationvalue> could be very useful if the y? function is not
a smooth function and the calculation of the gradient produces awkward results.

» The following tags are only relevant when the algorithm chosen is Simulated Annealing
(88.2):

— <Temperature> (Tp, real number > 0, typical value 1000): This tag defines the start-

ing value for the global temperature, which is updated (decreased) at every step of
the fit process.

<TemperatureReductionKoeff> (k, real number > O and < 1, typical value 0.8):
Defines coefficient for the temperature reduction.

<NumberOfReduction> (Ng, integer number > O, typical value 10): The value defines
the number of temperature reductions. The number of reductions Ni does not need
to be the same as the number of iterations N; specified by the number_iterations
tag. If Nr < N; and the first Ng reductions have been completed, then the global
temperature is reset to Ty, but with the configuration being the one that resulted from
the last reduction. The procedure continues until the total number of reductions
completed is V.

MAGIX manual 25

— <NumberOfReheatingPhases> (Ny, integer number > O, typical value 3): The value
defines the number of the reheating phases. The Simulated Annealing algorithm
“heats” with the temperature T, which leads to a modification of the starting values.
Then, Ty is reduced by k for N iterations. If the algorithm is not able to find a better
x? value after Ny iterations, MAGIX “heats” again with temperature To. MAGIX will
repeat this process Ny times before it stops the algorithm.

— <Schedulesa> This tag (only used for scipy version) defines the annealing schedule.
Available ones are ’fast’, ‘cauchy’, ‘boltzmann’.

» The following tag is only relevant for the Bees algorithm (§8.5):

— <NumberBees>: This tag defines the number of the so-called bees, which should be
used within the Bees algorithm. (The default setting is automatic.) The user can
define a value which has to be larger than

NBess = Nsite (5 +11- Nsite) - Nfree,

where N indicates the number of best sites, see above, and Ny the number of
free parameters. Otherwise, MAGIX determines the number of bees automatically.
Note that a bigger number would lead to an increased computational effort, whereas
a smaller number can produce a worse result. But this depends immensely on the
model function used in the fitting process.

» The following tags are only relevant for the Genetic algorithm (§8.6):

— <NumberChromosomes>: This tag defines the number of the so-called chromosomes,
which should be used within the Genetic algorithm. (The default setting is automatic.)
The user defined value has to be larger than zero. Note that a bigger number would
lead to an increased computational effort, whereas a smaller number can produce a
worse result. But this depends immensely on the model function used in the fitting
process.

— <UseNewRange>: This tag defines if the algorithm should determine new (shrinked)
ranges for each free parameter (yes), or not (no). (The default setting is yes.)

» The following tags are only relevant when the algorithm chosen is Nested Sampling (§8.3):

— <NumberObjects>: This tag defines the number of the so-called objects, which should
be used within the NS algorithm. A typical value is 100. Note that a bigger number
would lead to an increased computational effort, whereas a smaller number can
produce a worse result. But this depends immensely on the model function used in
the fitting process.

» The following tags are only relevant when the algorithm chosen is MCMC (§8.7):

— <NumberMcMCSampler>: This tag defines the number of the so-called walkers, which
should be used within the MCMC algorithm. A typical value is 100. Note that a
bigger number would lead to an increased computational effort, whereas a smaller
number can produce a worse result. But this depends immensely on the model
function used in the fitting process.

Following {8} there is no reason not to go large when it comes to walker number,
until you hit performance issues. Although each step takes twice as much compute
time if you double the number of walkers, it also returns to you twice as many

MAGIX manual

independent samples per autocorrelation time. So go large. In particular, we have
found that-in almost all cases of low acceptance fraction-increasing the number of
walkers improves the acceptance fraction. The one disadvantage of having large
numbers of walkers is that the burn-in phase (from initial conditions to reasonable
sampling) can be slow; burn-in time is a few autocorrelation times; the total run
time for burn-in scales with the number of walkers. These considerations, all taken
together, suggest using the smallest number of walkers for which the acceptance
fraction during burn-in is good, or the number of samples you want out at the end
(see below), whichever is greater. A more ambitious project would be to increase
the number of walkers after burn-in; this requires thought beyond the scope of this
document; it can be accomplished by burning in a set of small ensembles and then
merging them into a big ensemble for the final run. One mistake many users of
MCMC methods make is to take too many samples! If all you want your MCMC to do
is produce one- or two-dimensional error bars on two or three parameters, then you
only need dozens of independent samples. With ensemble sampling, you get this
from a single snapshot or single time step, provided that you are using dozens of
walkers (and we would recommend that you use hundreds in most applications). The
key point is that you should run the sampler for a few (say 10) autocorrelation times.
Once you have run that long, no matter how you initialized the walkers, the set of
walkers you obtain at the end should be an independent set of samples from the
distribution, of which you rarely need many. Another common mistake, of course,
is to run the sampler for too few steps. You can identify that you haven’t run for
enough steps in a couple of ways: If you plot the parameter values in the ensemble
as a function of step number, you will see large-scale variations over the full run
length if you have gone less than an autocorrelation time. You will also see that if
you try to measure the autocorrelation time (with, say, acor), it will give you a time
that is always a significant fraction of your run time; it is only when the correlation
time is much shorter (say by a factor of 10) than your run time that you are sure
to have run long enough. The danger of both of these methods-an unavoidable
danger at present-is that you can have a huge dynamic range in contributions to the
autocorrelation time; you might think it is 30 when in fact it is 30 000, but you don'’t
”see“ the 30 000 in a run that is only 300 steps long. There is not much you can do
about this; it is generic when the posterior is multi-modal: The autocorrelation time
within each mode can be short but the mode-mode migration time can be long. See
above on low acceptance ratio; in general when your acceptance ratio gets low your
autocorrelation time is very, very long.

— <NumberBurnInIter>: This tag defines the number of iterations (default 50) used for
the so-called burn-in phase, see (§8.7).

— <BackendFileName>: The tag defines the path and name of a so-called backend file
used to store and resume an interrupted MCMC run. If the given file does not exists
before the MCMC run starts, XCLASS stores all MCMC parameters into a HDF5
file. Therefore, the h5py python package has to be installed. In order to resume an
interrupted MCMC run, the path and name of the corresponding HDF5 file has to
be defined by this tag.

» The following tags are only relevant when the algorithm chosen is Additional packages
(§8.10):

— <minAlgorithm>: This tag defines the name of the scipy algorithm which should be
used. The following algorithms are available:

MAGIX manual 27

1. “fmin”,

2. “fmin_powell”,
3. “fmin_cg”,

4. “fmin_bfgs”,
5. “brute”.

For further documentation see documentation of scipy package.

Note that the tag <minalgorithm> has to include one of the above listed names of
algorithms.

» The following tags are only relevant when the algorithm chosen is Interval-Nested-
Sampling (§8.8):

— <vol_bound>: This tag indicates the critical element of the volume. If the tag is
empty, then MAGIX determines the value using the following expression:

Niee — 0.75
vol_bound = 0.1 - (1.0 _ w/M),
Nfree

where N indicates the number of free parameters.

— <delta_incl>: This tag defines the difference between maximal and minimal value
of inclusion function. (The default setting is 0.001.)

» The following tags are only relevant when the algorithm chosen is the Error estimation
(§8.10):

— <ErrorMethod>: This tag defines the method (“MCMC” (default), “INS”, “Fisher’) which
is used for error estimation (§8.9).

— <NumberMcMCSampler>: This tag (relevant only for the MCMC method) describes the
number of samples / walkers (default 2N, where N indicates the number of free
parameters) which are used by the MCMC algorithm, see description of tags used
by MCMC algorithm above.

— <NumberBurnInIter>: This tag (relevant only for the MCMC method) defines the
number of iterations (default 50) used for the so-called burn-in phase, see (§8.7).

— <UsePrevResults>: This tag (relevant only for the MCMC method) indicates, if pa-
rameter vectors calculated by other algorithms in the algorithm-chain, are used for
the burn-in phase (True) or not (False, default). Using previous calculated parame-
ter vectors reduces the computational effort, but the parameters are not calculated
at the position which where generated by the MCMC algorithm. So, the underlying
probability distribution might be not well sampled.

— <MultiplicitySigma>: This tag (relevant only for the MCMC method) defines the
multiplicity (default 2) of the standard deviation o, which defines the error bounds of
the free parameters. For example, by setting the multiplicity to 2 the error estimation
algorithm computes the 20 errors for the free parameters.

— <Variationvalue>: This tag (relevant only for the Fisher method) specifies the varia-
tion value (default 1073, see description of the <variationvalue> tag for the Levenberg-
Marquardt algorithm described above) used for the computation of the covariance
matrix, see (§8.9.1).

28 MAGIX manual

5.5 Optimization through an algorithm chain

It is possible to send the results of the optimization process performed by a certain algorithm,
to another optimization procedure through some other algorithm. Some directives about how
to select the order of the algorithms to use are given in §8.11.

In file 7, the fitting process starts with the Bees algorithm. Thereafter, the Levenberg-
Marquardt algorithm is applied to the best three sites found previously by the Bees algorithm.

Sample 7: Example of a fit control file with an algorithm chain

<?xml version="1.0" encoding="UTF-8"?>

<FitControl>
<!-- settings for fit process ——>
<!-- set number of used algorithms ——>

<NumberOfFitAlgorithms>2</NumberOfFitAlgorithms>

<algorithm>
<!-- define algorithm ——>
<FitAlgorithm>bees</FitAlgorithm>

<!-— special settings for bees algorithm ——>
<!—— BestSiteCounter (number of best sites) > 0 ——>
<BestSiteCounter>3</BestSiteCounter>

<!-- set max. number of iterations ——>
<number_iterations>30</number_iterations>

<!-- set max. number of processors ——>
<NumberProcessors>8</NumberProcessors>

<!-- set path and name of host file ——>
<MPIHostFileName>hostfile.txt</MPIHostFileName>

<!-- settings for chi”"2 —-—>
<limit_of_chi2>0.001</1limit_of_chi2>
<RenormalizedChi2>yes</RenormalizedChi2>
<DeterminationChi2>default</DeterminationChi2>
<SaveChi2>yes</SaveChi2>

<!-- set plot options ——>

<PlotAxisX>Frequency [Hz]</PlotAxisX>

<PlotAxisY>Intensity</PlotAxisY>

<PlotIteration>yes</PlotIteration>
</algorithm>

<algorithm>

<!-- define algorithm ——>
<FitAlgorithm>Levenberg-Marquardt</FitAlgorithm>

<!-- set max. number of iterations ——>

MAGIX manual

<number_iterations>20</number_ iterations>

<!-- set max. number of processors ——>
<NumberProcessors>8</NumberProcessors>

<!-- set path and name of host file ——>
<MPIHostFileName>hostfile.txt</MPIHostFileName>

<!-- settings for chi®2 —-—>

<limit_of_ chi2>0.0008</limit_of_ chi2>
<RenormalizedChi2>yes</RenormalizedChi2>
<DeterminationChi2>default</DeterminationChi2>
<SaveChi2>yes</SaveChi2>

<!-- set plot options ——>
<PlotAxisX>Frequency [Hz]</PlotAxisX>
<PlotAxisY>Intensity</PlotAxisY>
<PlotIteration>yes</PlotIteration>
</algorithm>
</FitControl>

30 MAGIX manual

6 MAGIX Output files

A series of files are created during a run of MAGIX:

6.1 Log files

MAGIX creates three different log files (see above, § 2) for each application of an algorithm
referred to in the fit control file (see §5):

» a “normal” log-file with ending “.log”, which corresponds to the screen output. The log
file contains for every iteration step the best y? value and the corresponding values of the
parameters that are being optimized.

» a file with ending “log.param” including for every iteration step the best x? value and
the corresponding values of the parameters that are being optimized as well as all input
files for the external model program. This allows the user to verify that MAGIX writes the
parameters at the right positions.

» a file with ending “.log.chi2” including all x? values and the corresponding free parameter
values for all calls of the external model program starting with the smallest x? value.

Note, if the user specifies only the path for the log-files, MAGIX creates the files “fit.log”,
“fit.log.param”, and “fit.log.chi2”. Otherwise MAGIX creates a log file with filename specified in
the I/O control file and extends the filename within “.log.param” and “.log.chi2”. For example
the user specifies PathToYourFiles/mylogfile in the I/O control file. Then MAGIX creates three
different log-files:

» “PathToYourFiles/mylogfile.log”,
» “PathToYourFiles/mylogfile.log.param”, and

» “PathToYourFiles/mylogfile.log.chi”2”.

The names of the log-files become more complicate, if the user applies a algorithm chain:

MAGIX extends the name of the log-files by an abbreviation for the algorithm (e.g. ‘LM” for
Levenberg-Marquardt) and by “__call_” followed by the number of the call of the algorithm.
For example, the Levenberg-Marquardt algorithm is applied to the three best sites of a pre-
vious used Bees algorithm, then the names of the log-files (“fit.log” for simplification) are
“fit_ LM__call_1.log”, “fit_LM__call_2.log”, “fit_LM__call_3.log”,
“fit LM__call_1.log.param”, “fit_LM__call_2.log.param”, “fit_ LM__call_3.log.param”,
“fit_LM__call_1.log.chi2”, “fit_ LM__call_2.log.chi2”, “fit_ LM__call_3.log.chi2”.

6.2 Files for fit function comparison and y?

For each experimental data file MAGIX creates two (three) additional output files in the directory
where the experimental data files are located:

(a) File of optimized parameter values: After finishing a fit algorithm MAGIX writes all pa-
rameter values and the corresponding error values (if calculated) for the best fit to a file
which has the same names as the instance file. Additionally, MAGIX extends the ending
of the filename with an abbreviation for the algorithm (e.g. “LM” for Levenberg-Marquardt)
followed by the phrase “.out.xml”.

MAGIX manual 31

For example, the instance xml-file is named “parameter.xml”. MAGIX writes the optimized
parameter values and the corresponding error values (if calculated) to the file “parame-
ter.LM.out.xml”.

(b) File of fit function values: Additionally, MAGIX writes the values of the model function
for each data point of the best fit to files which have the same names as the experimental
data files. But, MAGIX extends the ending of the filenames with an abbreviation for the
algorithm (e.g. “LM” for Levenberg-Marquardt) followed by the phrase “.out.dat” for ASCII
files and “.out.fits” for fits files.

For example, the name of the experimental data file is “datafile.dat”. MAGIX writes the
values of the model function to the file “datafile.LM.out.dat”.

(c) File with X2 values: If the user sets the value of the tag <savechi2> to “yes”, MAGIX writes
the values of y? for each data point of the best fit to further files. These files have the same
names as the experimental data files except that MAGIX extends the ending of the filenames
with an abbreviation for the algorithm (e.g. “LM” for Levenberg-Marquardt) followed by the
phrase “.out.chi2.dat” for ASCII files and “.out.chi2.fits” for FITS files.

For example, the name of the experimental data file is “datafile.dat”. MAGIX writes the
values of y? for each data point to the file “datafile.LM.out.chi2.dat”.

(d) Error Estimation: If the user selects the error estimation algorithm MAGIX produces four
additional files for each experimental data file. Two of these files contain the model function
for each data point where each free parameter is reduced (enhanced) by the corresponding
lower (upper) error value. The other two files contain the corresponding x? functions.
The filenames corresponding to the reduced (lower) parameter values contain the phrase
“LowerErrorValues” the enhanced contain “UpperErrorValues”.

For example, the name of the experimental data file is “datafile.dat”. MAGIX writes the val-
ues for the reduced parameters to “datafile.ErrorEstim_INS__LowerErrorValues__call_1.out.dat”
and to “datafile.ErrorEstim_INS__LowerErrorValues__call_1.out.chi2.dat” whereas the en-
hanced parameters are written to “datafile.ErrorEstim_INS__UpperErrorValues__call_1.out.dat”
and to “datafile.ErrorEstim_INS__UpperErrorValues__call_l.out.chi2.dat”.

Additionally, MAGIX determines the x? distribution for each free parameter. In order to
determine the error of a parameter j at the minimum, MAGIX varies this parameter within
the given parameter range, whereas the other parameters are kept constant. MAGIX plots
the x?2 values as a function of the free parameter j and and saves the plot to a file named
“ErrorEstim_INS__chi2-distribution_of_free-parameter_parm_” followed by an integer num-
ber indicating the free parameter. Additionally, the plotted y? values together with the
corresponding parameter values are stored to an ASCII file having the same name as the
corresponding png file. For example, the file “ErrorEstim_INS__chi2-distribution_of_free-
parameter_parm_1.png” contains the plot of the y? distribution of the first free parameter
and the ASCII file “ErrorEstim_INS__chi2-distribution_of_free-parameter_parm_1.dat” con-
tains the data points plotted in the png file.

Furthermore, MAGIX adds further informations to the plot: The value of the parameter
which corresponds to the best fit result is indicated by a solid vertical thick black line.
The error range determined by the Error Estimation algorithm is marked with two dashed
vertical red lines, see Fig. 4.

The names of the output files produced by MAGIX become more complicate, if an algorithm
chain is used or if the number of best sites is set to a value greater one:

32 MAGIX manual

320000

315000 J

310000} .

305000

300000

295000

290000

285000

280000

i i i i
275000 200 400 600 800 1000

free parameter 1

Figure 4: Example of a y? distribution plot for the seventh free parameter. The solid vertical thick black
line indicates the optimized parameter value and the two dashed vertical red lines describe the optimized
parameter value reduced by the left and increased by the corresponding right errors, respectively.

In addition to the extensions of the file names described above, MAGIX adds in case of an
algorithm chain the phrase “__call_” followed by the number of the call of the algorithm as well.

For example, the Levenberg-Marquardt algorithm is applied to the three best sites of a
previous used Bees algorithm, then the names of the instance xml-files are named “parame-
ters.LM__call_1l.out.xml”, “parameters.LM__call_2.out.xml”, and “parameters.LM__call_3.out.xml”.

In order to distinguish between different “best” sites, MAGIX adds in addition to the ex-
tensions described above the phrase “__site_” followed by the number of the best site as well.
For example, the user applies the Bees algorithm and sets the number of best sites to 3. The
names of the instance xml-files are named “parameters.Bees__call_1__site_1.out.xml”,
“parameters.Bees__call_1__site_2.out.xml”, and “parameters.Bees__call_1__site_3.out.xml”.

In cases of special FITS files that are images, the X column is declared in the header
through the declarations of the first reference pixel (CrRp1x1), its value (crvaLl), and the dis-
tance between two pixels (cDELT1). If the user specified more than one range for the import of
experimental data, then we have to additionally specify which one of those ranges is referred
to in which one of the aforementioned output files (a+b).

Imagine that the user has specified more than one data range for the experimental FITS
file pathToYourFiles/datafile.fits. If the beginning and end of range R are begR and endR
respectively, then for this experimental file and each application (serial number N) of each
algorithm (alg), MAGIX creates two files for each range r:

MAGIX manual 33

(a) File of fit function values: PathToYourFiles/datafile_alg_N.out_begR_endR.fits

(b) File with)(2 values: PathToYourFiles/datafile_alg_N.out_begR_endR.chi2.fits

It must be understood that the string strings begR and endr are substituted by the exact
numbers that give the beginning and end of ranges.

6.3 Plots

If the user do not select the ——noplot option, MAGIX creates a plot containing the experi-
mental data, the model function values and the y? values for each data point. The plot is
divided into two parts: The left side contains plots for each experimental data file where the
observation data are plotted together with the model function for the best fit result. The
right side contains plots for the corresponding y? values for each data point, see Fig. 5. Fi-
nally, the plot is saved to a file where the name contains the phrase “final_plot”, but become
more complicate, if the user applies an algorithm chain or sets the number of best sites to
a value greater 1, see the general description of the output file names above. For example,
the user applies the Bees algorithm and sets the number of best sites to 3. The names of the
plot files are named “final_plot.Bees__site_1.out.xml”, “final_plot.Bees__site_2.out.xml”, and
“final_plot.Bees__site_3.out.xml”.

0.8 — : : : : : : : 1e-10,5
} . | = + observation — chi™2
i é é ! é I 435
43.0
0.5 1 I
2 [125 2
g 0.4t | g
3 - 3
I= L g 42.0
03§] I
g ? —41.5
X !
0.2} :
: i 11.0
i i i i i
0050240 430 620 810 200 400 600 800 10000

Frequency [Hz] Frequency [Hz]

Figure 5: The final plot for the Levenberg-Marquardt example.

34 MAGIX manual

7 Model registration

7.1 Scientific rationale
MAGIX must communicate with the external program:

» Before each function call, MAGIX has to provide the starting values of the parameters to
the external model program, so that it runs. During one optimization step the values of
the parameters that are to be fitted have been modified. So at each next function call,
MAGIX has to provide input files which are modified in comparison to the input files
provided to the external model program at the previous function call.

MAGIX knows the new values of the parameters specified in the input files, but does not
yet have the actual input files that contain the new parameter values - since the external
program can only receive the parameter values (and run) if they are given in the form of
the input files that it expects to read.

Therefore MAGIX has to be given directives about how to create/write the input files that
will be used in the next function call.

» After each optimization step, MAGIX compares the experimental data with the value of the
dependent variables calculated by the external program with the use of the latest values
of the parameters that are being optimized. The comparison between the two takes place
through the calculation of y?, so with one value per optimization step we can visualize
the actual optimizing procedure.

The new values of the model function have to be read from the output file of the previous
function call. After MAGIX has done its job, it has to print the input file for the external
program,; this file will contain the best fitting values of the model parameters.

Therefore MAGIX needs also descriptions of the output files of the external model program.

Ideally, the registration of a model should occur only once, i.e. we don’t have to create a
new registration file for a model more than once or every time that we want to run MAGIX for
this model. Whenever one wants to optimize some parameter(s) of the model with MAGIX, it
should be enough that one edits the instance.

The descriptions of both the input and the output files are given in XML format in the XML
files that we call registration files. The following example helps in making important remarks
about the tags of the registration XML files.

Additionally, the script starting the external model program plays an important role. This
so-called “start-script” has to prepare all file(s) except the input file(s) to start the external model
program. For example, the external model program requires some environment variables and
some additional files (from a database), the start-script has to copy the files to the designated
directory, sets the environment and finally, starts the external model program.

7.2 Organization of MAGIX

Before we start with the description of the registration process, it is important to understand
how MAGIX is organized. This is can be roughly made clear by presenting the directory tree,
i.e. how and where the temporary directories of MAGIX are created and used, which files are
considered temporary, from and to where the temporary files are copied. When we understand
this, we will understand where MAGIX is executed and where the partial instances of the
external model program are executed, making it more obvious why and how a mistake or
system crash might emerge.

MAGIX manual 35

function calls

MAGIX run
. thread (inner ID 0)
/' processor/directory P=0
L2 :
= O = ':
5% 5g 4 i
S o€ thread (inner ID 1)
S @ 1 —
:g © 5 b) process PID processor/directory P=1
=8) <= - | directory "job_PID"
xX = O ®
g3 | |28
=3I z
£
thread (inner ID N-1)
processor/directory P=N-1

Figure 6: The tree below the MAGIX root directory, together with the N temporary directories created in
one MAGIX session.

As MAGIX is a piece of software developed for the optimization of the values of the parame-
ters of a model, it is obvious that the algorithms available to perform the optimization process
will work in an iterative way, performing recurrent function calls to the external model program.
The results of each function call are compared between each other in order to check which set
of parameters best fits our experimental data.

These recurrent calls to the external model program are more quickly performed when
executed in parallel. (The gain in computational time is explained in §7.7.) Therefore MAGIX is
developed as a parallelized software. This does have some further logical requirements from the
user and the programs whose parameters s/he wants to optimize with MAGIX (§7.7). But the
external model program does not need to be itself parallelized (but if it is, there is no problem).

The tree from the MAGIX root directory and below is shown in fig. 6. Each processor has
its own thread (its own process identification number) and its own running directory.

7.3 Start script

A very important information that is given in the registration file is the path and the name of
the start script, which will be described in the following:

The way MAGIX is organized is largely made clear through the start script, the path and
name of which are given in the registration file. This is the script that includes the command
that actually executes the external model program, all the commands that have to run before
the external program runs, as well as all the commands that have to follow after its execution

is completed.

In order to debug the start script use the —--debug flag at the MAGIX start (§ 1.4).

The start script has to be an executable script, without any constraints on the scripting
language (e.g. shell, python etc.). The first line of the start script has to contain a line starting
with #! (no preceding spaces), which will tell your system that this file is a set of commands to
be fed to the command interpreter indicated and where this interpreter is located. For example
for a bash shell script, the first line of the start script has to be:

#!/bin/bash

We forget for a moment this first line that specifies how the script has to be interpreted.

36 MAGIX manual

It is absolutely necessary for the external model program that the start script and the
input/output file(s) have to be allowed to be copied to arbitrary directories: The external model
program has to allow its start script be moved to an arbitrary directory, and the input and the
output files have to be read from and written in the directory where the start script is located.
This arbitrary directory is the temporary directory that is created for each thread, see fig. 6.

7.3.1 Simple start scripts

The simplest start script contains only the command with which the model program is executed.
Imagine that we want to optimize the parameters of a program called mystery, whose running
command is simply ./mystery_machine. The following notes all refer to such cases, where
only the external program’s execution command is included in a bash shell start script, which
therefore is a file of only two lines (the interpreter specification and the execution command).

» If the executable is located in MAGIX root directory, and all the input and output files are
/ will be located in the directory where the executable runs, then the (shell) start script
will contain only one line:

./mystery_machine

If there is any preparation to be done before the program is executed, the corresponding
commands will go before this line. If there is any post-processing to be done after the
program is executed, the commands have to go below this line.

» After you have created the start script (and all the XML files needed by MAGIX), you have
to define it in the preamble of the registration file (§ 7.6). Then you can run MAGIX with
the command

./magix_start.py PathToYourFiles/io_control_ test.xml

where PathToYourFiles/io_control_test.xml is the path and file name of the /O con-
trol file (§ 2), where the registration file is specified. The registration file specifies the
start script within the <pathstartScript> and the <ExeCommandStartScript> tags. In the
simplest case the start script is a file that contains only two lines

#!/bin/bash
./mystery_machine

» When you run MAGIX (giving the command at the root directory of MAGIX - that is where
MAGIX runs), the external model program is not executed in the root directory of MAGIX.
Instead, MAGIX copies the start script located in the directory, which is given by the
tag <pathstartScript>, to the directory of the current thread (the thread directories are
visualized on the right side of fig. 6).

Note, the tag <pathstartscript> have to include not only the path but also the name of
the start script.

For example, MAGIX copies the start script start_mystery.sh located in the directory

PathToExample to the temp directory “temp/job_12345678/0/”. (Here, we assume that
the environment variable MAGIXTempDirectory is set to “temp/”). The corresponding tags
<PathStartScript> and <ExeCommandStartScript> in the registration file have to be set to

<PathStartScript>PathToExample/start_mystery.sh</PathStartScript>
<ExeCommandStartScript>./start_mystery.sh</ExeCommandStartScript>

MAGIX manual 37

After copying the start script to the current thread directory MAGIX executes the start
script within the current thread directory using the command, which is defined by the
tag <ExeCommandStartScript>. Therefore, the command to start the start script must not
include an absolute path definition.

» If you want to save the screen output of the program’s execution to some file, you
have to redirect the screen output to some arbitrary file by setting the value of the tag
<ExeCommandStartScript> to

./start_mystery.sh > screen_output.txt

» Additionally, MAGIX writes all input file(s) to the current thread directory. If the external
model program expects the input file(s) in a special subdirectory (e.g. “Eingabe-Dateien/”),
then the start script has to create this subdirectory within the thread directory and copies
the input file(s) to this subdirectory. But this will be described in more detail in the
following subsection.

7.3.2 Start scripts that include pre- and post-processing

Imagine that the user scoobydoo wants to optimize the parameters of the same program referred
to in the previous section, mystery. Below we will show step by step what kind of commands
the start script start_mystery_example.sh located in the directory pPathToExample must/may
contain. In the text I refer to shell-like commands, while the sample start script 8 is a python
script doing more or less the same staff. The corresponding tags <pathStartScript> and
<ExeCommandStartScript> in the registration file have to be set to

<PathStartScript>PathToExample/start_mystery_example.sh</PathStartScript>
<ExeCommandStartScript>./start_mystery_ example.sh</ExeCommandStartScript>

» You can print user name, date and time of MAGIX run.

echo "user = ‘whoami‘' —-- time: ‘date‘"

» If the program expects to find the input file “input.txt” in a directory called Eingabe-Dateien/
which is located in the directory where the program is executed, then the corresponding
commands have to be included in the start script start_mystery_example.sh, before the
command that executes the program:

#!/bin/bash
mkdir Eingabe-Dateien

cp input.txt Eingabe-Dateien/
./mystery_machine

» If the program expects that there is a directory called ausgabe-Dateien, where all the
output files will be stored in, then the command to create this directory has to be also
added before the command that executes the program. Otherwise, the program will
crash, since it will not be able to find the directory where the output files are expected to
be saved. So, the example start script has to be extended in the following way:

#!/bin/bash
mkdir Eingabe-Dateien
mkdir Ausgabe-Dateien

cp input.txt Eingabe-Dateien/
./mystery_machine

38 MAGIX manual

» If you want to make sure that the external program is executable by everybody, you can
type the UNIX command

chmod 555 mystery_machine

before you execute the program.

» You can combine several commands in the execution command defined by the tag

“.”

<ExeCommandStartScript> using the “;” character:

chmod 555 start_mystery_example; sh start_mystery_example.sh

The above are possible commands that you may want to execute before the actual execution of
the program by adding the line

./mystery_machine

Afterwards you might want to add some final commands, by the end of the start script:

» If some of the output files are very big, then you may want to compress them

gzip -9 Output-Files/filesAx*.txt

and/or remove them:>

rm —f Output-Files/filesA«.txt

» If you want to perform some post processing after the external program has run, you will
type the necessary commands within the start script after the command that executes
the program. For example, the following bash shell segment reads one of the output files
that contains energy levels and subtracts the energy value of the first line, which is the
base energy.

counter=0
while read EnergyLine
do
let "counter = Scounter + 1"
if [Scounter -gt 3]; then
if [[$Energyline =~ "——————— " 1]; then
break
else
line=$ (echo $EnergylLine | awk ' {print S$SNF}’)
if [$counter -eq 4]; then
GSEnergy=line
fi
echo ‘expr $1ine-$GSEnergy‘' >> ExcitationEnergies.dat
fi
fi
done < Output-Files/energy.txt

During the optimization process, MAGIX performs a number of calls to the external model
program, in the end of which the parameters have been somewhat optimized. The modified
parameters will be written into a new model instance, which will be used as the input instance
at the next function call.

3Directives for the start script: In the case that you want to add some removal commands, you have to add the
force option (-£), otherwise MAGIX will stop at the end of every function call and waiting for the user to confirm or
deny deletion. In the same logic you have to make sure that certain aliases in your .bashrc (or .bash_aliases or
similar scripts that depend on your OS/shell and presume aliases to commands) do not require confirmation for
commands that are used in the start script.

MAGIX manual 39

Note, that MAGIX removes all files/subdirectories in the current thread directory after read-
ing in the output file(s). Therefore, the start script has to create the several subdirectories for
every function call.

Sample 8: A complete (python) start script. This start script performs quite the same operations as
the ones described incrementally in § 7.3.2. Additionally, it copies the executable and some additional
system files from directory Fit-Functions/mystery/bin, which is located inside the root directory of
MAGIX. The executable and the system files will be copied to the thread directory of each function call
during the optimization process.

#!/usr/bin/python
example start script in python

load python packages

import sys ## load sys package
import os ## load os package
import string ## load string package
import numpy ## load numpy

unlimit UNIX stacksize (different to the OMP_STACKSIZE needed for OpenMP)
os.system("ulimit -s unlimited")

create output directory within local temp-directory
os.system ("mkdir Output-Files/")

create input directory within local temp-directory
os.system ("mkdir Input-Files/")

copy SystemFiles directory to local temp-file
os.system("cp —-r Fit-Functions/mystery/bin/SystemFiles/ .")

copy mystery execution file
os.system("cp Fit-Functions/mystery/bin/mystery_machine .")

move input file to input directory
os.system ("mv eingabe.txt Input-Files/")

make the file executable for everybody
os.system ("chmod 555 mystery_machine")

start mystery_machine
os.system ("./mystery_machine > screen_output.txt")

zip basis_angular-momentum file
os.system ("gzip Output-Files/basis_angular—-momentumx*.txt")

copy energies—-file to local temp-directory and create final output file
os.system ("cp Output-Files/energy.txt .")

import energy file
f = open("energy.txt")
contens = f.readlines|()

construct final output array
OutputFile = []
counter = 0
for Energyline in contens:
counter += 1
if (counter > 3):
if (Energyline.strip() == "--—-—--------———————— ")

40 MAGIX manual

exit loop if end of energies is reached
break
else:
line = EnergylLine.split ()
if (counter == 4):

GSEnergy = float (line[l]) ## save ground state energy
CurrentEnergy = float (line[l])
OutputFile.append (CurrentEnergy — GSEnergy) ## create excitation energy

f.close()

save output array to file
numpy .savetxt (' ExcitationEnergies.dat’, OutputFile) ## use exponential notation

7.4 Input files of constant content or whose parameters are to be optimized

The registration file describes the format of the input and output files of the external model
program. As explained in the previous section, in the end of each iteration step the new
optimized values of the parameters will be written in the new instance, which will be used by
MAGIX in the next iteration step so that the new ASCII input file is created and given to the
external model program to run. All this process takes place in the thread directory, i.e. any
thread directory contains an initial instance with the starting values and a new instance with
the optimized values. So all input and output files described in the registration file have to be
referred to in the program with their relative paths.

When an input file is not included in the registration file, this means that no parameter
given in this file has ever to be optimized. In fact, those files are used in a read-only mode
and they can also be given in their absolute paths. For example, if we ever want that some file
taken from a database would be updated, we would simply substitute the older file with one
with the new data. Those files DO NOT need to be included in the registration file.

Concluding, we distinguish the input files in two categories:

» Input files that contain parameters that we might want to optimize. Those files have to
be included in the registration file.

» Input files that contain parameters that we know we will never attempt to optimize. Such
files contain constants or values/files from a (public) database.

7.5 Examples of input files and their registration
Below there are two examples of registering models with only one input file.

Sample 9: A simple model input file: no replications of parameters or lines

100.123

2.2 // This is a remark
45

300.0

Sample 10: The registration file of sample input file 9

<InOutputFile>
<!-- settings for call of model program ——>
<ModelProgramCall>
<CommandLine>Fit-Functions/DL_conv/bin/DrudelLorentzConv.exe</CommandLine>
<CalculationMethod>AtOnce</CalculationMethod>

MAGIX manual

41

<ParallelizationPossible>Yes</ParallelizationPossible>
</ModelProgramCall>

<!-- define number of input files —-—>
<NumberInputFiles>1</NumberInputFiles>

<!-- description of input file 1 ——>
<InputFile>
<!-- define name of input file ——>

<InputFileName>in.txt</InputFileName>

<!-- define number of unreplicated lines ——>
<NumberLines>4</NumberLines>

<!-- describe 1lst line ——>
<line group="false">
<NumberReplicationLine></NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- define settings for parameter XValuel —-—>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>XValuel</Name>
<Format>F7.3</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
<!-— describe 2nd line ——>

<line group="false">
<NumberReplicationLine></NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- define settings for parameter ParameterB ——>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>ParameterB</Name>
<Format>F4.1</Format>
<LeadingString></LeadingString>
<TrailingString> // This is a remark</TrailingString>

</Parameter>

</line>

42

MAGIX manual

<!-- describe 3rd line ——>
<line group="false">
<NumberReplicationLine> </NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- define settings for parameter ParameterC —-—>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>ParameterC</Name>
<Format>I2</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
<!-- describe 4th line ——>

<line group="false">
<NumberReplicationLine>NumberOscillators</NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- define settings for parameter ParameterD ——>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>ParameterD</Name>
<Format>F5.1</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
</InputFile>
<!-- xml-description of the lst output file —-—>
<!-- define number of output files ——>

<NumberOutputFiles>1</NumberOutputFiles>

<!-- description of output file 1 —-—>
<OutputFile>
<!-- define name of output file —-—>

<OutputFileName>FitFunctionValues.dat</OutputFileName>

<!-- define OnlyYColumn flag —-—>
<OnlyYColumn>yes</OnlyYColumn>

MAGIX manual

43

<!-- define format of output file —-—>
<OutputFileFormat>ascii</OutputFileFormat>

<!-- define number of header lines ——>
<NumberHeaderLines></NumberHeaderLines>

<!-- define character indicating comments —-—>
<CharacterForComments></CharacterForComments>
</OutputFile>
</InOutputFile>

Sample 11: ASCII input file for the conventional Drude-Lorentz model (model where one line has to be

repeated as many times as given by the parameter NumberOscillators

100.123

3.5

3

100.0 456.234 12.120
250.0 106.641 2.127
403.0 251.577 30.022

Sample 12: The registration file of sample ASCII input file 11

<?xml version="1.0" encoding="ISO-8859-1"7?>
<InOutputFile>
<!-- settings for call of model program ——>
<ModelProgramCall>

<CommandLine>Fit-Functions/DL_conv/bin/DrudelorentzConv.exe</CommandLine>

<CalculationMethod>AtOnce</CalculationMethod>

<ParallelizationPossible>Yes</ParallelizationPossible>

<InputDataPath>DatalIn.dat</InputDataPath>
</ModelProgramCall>

<!-- define number of input files ——>
<NumberInputFiles>1</NumberInputFiles>

<!-- description of input file 1 ——>
<InputFile>
<!-- define name of input file ——>

<InputFileName>in.txt</InputFileName>

<!-— define number of unreplicated lines ——>
<NumberlLines>4</NumberLines>

<!-- describe lst line ——>
<line group="false">
<NumberReplicationLine> </NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

44

MAGIX manual

<!-- define settings for parameter XValuel ——>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>XValuel</Name>
<Format>F15.8</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
<!-- describe 2nd line ——>

<line group="false">
<NumberReplicationLine> </NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- define settings for parameter EpsilonInfinity —-—>
<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>EpsilonInfinity</Name>
<Format>F15.8</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
<!-— describe 3rd line ——>

<line group="false">
<NumberReplicationLine></NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- define settings for parameter NumberOscillators ——>
<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>NumberOscillators</Name>
<Format>I6</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
<!-- describe 4th line ——>

<line group="false">
<NumberReplicationLine>NumberOscillators</NumberReplicationLine>

<!-- define number of parameters of current line ——>
<NumberParameterLine>3</NumberParameterLine>

MAGIX manual

45

<!-- define settings for parameter EigenFrequency -—-—>
<Parameter group="false">

<NumberReplicationParameter></NumberReplicationParameter>

<Name>EigenFrequency</Name>

<Format>F8.1</Format>

<LeadingString></LeadingString>

<TrailingString></TrailingString>
</Parameter>

<!-- define settings for parameter PlasmaFrequency —-—>
<Parameter group="false">

<NumberReplicationParameter></NumberReplicationParameter>

<Name>PlasmaFrequency</Name>

<Format>F11.3</Format>

<LeadingString></LeadingString>

<TrailingString></TrailingString>
</Parameter>

<!-- define settings for parameter Damping ——>
<Parameter group="false">

<NumberReplicationParameter></NumberReplicationParameter>

<Name>Damping</Name>
<Format>F11.3</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>
</line>
</InputFile>
<!-- xml-description of the lst output file —-—>
<!-- define number of output files ——>

<NumberOutputFiles>1</NumberOutputFiles>

<!-- define AllInOneOutputFile flag ——>
<AllInOneOutputFile>yes</AllInOneOutputFile>

<!-- description of output file 1 ——>
<OutputFile>
<!-- define name of output file -—>

<OutputFileName>FitFunctionValues.dat</OutputFileName>

<!-- define OnlyYColumn flag ——>
<OnlyYColumn>yes</OnlyYColumn>

<!-- define format of output file —-—>
<OutputFileFormat>ascii</OutputFileFormat>

<!—-— define number of header lines ——>

46 MAGIX manual

<NumberHeaderLines></NumberHeaderLines>

<!-- define character indicating comments ——>
<CharacterForComments></CharacterForComments>
</OutputFile>
</InOutputFile>

The outer tag section is divided in four main parts:ModelProgramCall, NumberInputFiles,
InputFile (as many times as specified by NumberInputFiles), NumberOutputFiles and OutputFile
(as many times as specified by NumberoutputFiles; see §7.13)

The simplest tags will be explained here, and the more complex ones will be explained in
separate sections.

Information about some simple tags:

» The tag <NumberInputFiles> defines the number of input files that are described in the
registration XML file for the given model. The description of each input file has to be
included within a separate <InputFile> tag.

<NumberInputFiles>2</NumberInputFiles>
<InputFile>
<title>Description of the first file</title>

<InputFileName>Filel.txt</InputFileName>
<NumberLines>4</NumberLines>

</InputFile>

<InputFile>
<title>Description of the second file</title>
<InputFileName>File2.txt</InputFileName>
<NumberLines>4</NumberLines>

</InputFile>

» The tags <InputFileName> and <OutputFileName> have to include the file name (and rel-
ative path) of the input and output files of the fit function program, respectively.

7.6 Function calls

The ModelProgramcCall tag includes the directives concerning how to perform the function calls,
or in other words the execution of the external model program.

» As mentioned above, the tag <pathStartScript> contains the (relative or absolute) path
and the filename of the start script. The relative path has to be defined relative to the
MAGIX root directory.

» The command to start the start script is defined by the tag <ExeCommandstartScript>.

» <ParallelizationPossible>: The tag <ParallelizationPossible> defines whether the
external program allows parallelized running (yes) or not (no). Section § 7.7 sets the
requirements for a model program to be able to be executed in a parallelized MAGIX
session, while how this works is also explained in detail.

» In order to calculate the y? at every one of the X points for which we have a Y value in
our experimental data files, we need the value of the fit function at the same X point.
Therefore it is often necessary to resample our fit function, i.e. calculate it at the same X
points for which we have experimental data.

MAGIX manual a7

As the resampling method integrated in MAGIX cannot be exact and it may not meet the
requirements of the user, it is highly recommended that the user provides his/her own
resampling routines/modules. If s/he has such routines available, then s/he simply has
to make sure that those routines are executed at each completion of the external model
program has completed, which can be achieved by adding the necessary command in the
post-processing part (after calling the model program) of the MAGIX start script (§7.3).

If the fit function program needs the X points of the experimental data where the fit func-
tion should be calculated, then the user has to make use of the <InputDataPath> tag, in
order to define the file name of a ASCII data file that contains only the X points of all exper-
imental data files which are located within the given exp. data ranges. For example, the
user would like to use a experimental data file which contains the measured transmission
between 1 - 5 MHz. Additionally, the user defines a data range from 3 - 4 MHz. MAGIX
will write all X column values between 3 - 4 MHz to the ASCII file with name defined in
the tag <InputDataPath>. So, MAGIX will write only those X column values to the ASCII
file for which the values of the model function are required. If the tag <InputDataPath> is
not empty, MAGIX writes all X column values to one big ASCII file which is stored to the
same MAGIX temp directory where the input file(s) are written to. The first n lines of the
ASCII file contain the n X column values of the first experimental data file. The next m
lines correspond to the m X column values of the second experimental data file etc. For
example, the first experimental data file contains the X column values:
100.341234

101.234512
102.342456

The second experimental data file contains the X column values:

340.123456
341.986453
342.567887
343.103245

Then the ASCII file with name defined in the tag <InputDataPath> looks like:

100.341234
101.234512
102.342456
340.123456
341.986453
342.567887
343.103245

If the external model program requires the number of X column values of the ith ex-
perimental data file within the defined ranges, the user has to use the MAGIX variable
“NumberXValue” followed by the integer number of the ith experimental data file in the
registration XML file. In the example described above, the variable “NumberXValuel” is
equal to 3 and contains the number of X column values in the first experimental data
file. Accordingly, the variable “NumberXValue2” is equal to 4 and contains the number
of X column values of the second experimental data file. If the external model program
requires the number of experimental data files as well, the user has to use the MAGIX
variable “MAGIXImportNumberExpFiles” in the registration XML-file. In the example de-
scribed above, the MAGIX variable “MAGIXImportNumberExpFiles” is set to 2.

If the external model program requires the number of X column values of each experimen-
tal data file, the user has to use the MAGIX variable “NumberXValueAll” in the registration

48 MAGIX manual

XML file. The MAGIX variable “NumberXValueAll” is a list where the ith element repre-
sents the number of X columns of the ith experimental data file. In the example described
above, the MAGIX variable “NumberXValueAll” has the value “3, 4”. Note, the numbers
of X column values of each experimental data file are separated by “,”.

There are two cases where we need the X points:

— For external model programs that need some kind of sampling, i.e. inter- or extrap-
olation and perform it with their own resampling routines.

— To avoid resampling by MAGIX, if the external model program reads the experimental
data files internally and therefore also the resampling is done within the execution
of the model function call.

In those two cases, the content of the <InputbDataPath> tag is needed in the registration
file.

7.7 Parallelization

When we talk about parallelization of a MAGIX run, we never talk about parallelization of the
model program. The parallelization of the external program is something that concerns the user
of the external program and has nothing to do with MAGIX, except that the total number of
processors that are available is not exceeded. For example, the external model program uses 3
cores (processors) and the user set the number of processors defined in tag <NumberProcessors>
in the fit-control file (§5) to 4, the computer must have at least 12 cores (processors).

Of course it is recommended that the model program is itself parallel, especially in programs
that are very time-consuming, but whether the model program is parallel or not is absolutely
irrelevant for this model running in MAGIX.

In order that a model program is used in an parallelized MAGIX run, we need to make sure
that it is possible to execute two or more instances of the same model on the same machine at
the same time. This requirement is not met in the following cases:

» When the input and output files of the external model program are given in absolute
paths: If even one of those files is given in its absolute path and more than one calls of
the external model program run at the same time, then a file that was created will be
overwritten by another call of the model function.

» When the external model program reads data from public databases, which do not allow
access of more than one people at the same time: Then if one program accesses the
database, and another program asks also for access, then the second program will not
get access.

» When the program creates many/big temporary files during the run: Even if those files
are deleted in the end of the program’s run, when MAGIX executes such a program in a
lot of treads, then the size of the files that are temporarily written might become too big
for the system to handle.

A very coarse way to check if parallelization is possible is to execute two model runs on the
same machine at the same time (not even using MAGIX). If the system does not crash, then
it is very probable that parallelization IS possible, unless there is a problem of storage of the
temporary files when more than two instances are executed at the same time.

In case that <parallelizationPossible> is set to yes, it might be crucial to check out
the environment variables MAGIXTempDirectory and OMP_STACKSIZE (§ 1.6.1). Parallelization is

MAGIX manual 49

especially needed in cases that we use algorithms that perform a lot of function calls to the
external model program; such algorithms are the swarm algorithms, as function calls of the
external model program can always be performed in parallel. If there is only one processor
available, we need e.g. N, > 1 function calls, and each function call needs CPU time equal to ¢,
on average, then a single processor would do it serially in a time period equal to t.N.. If we were
to perform N, function calls in parallel with p processors, we would roughly need a time period
equal to t.N./p (see also §A.2.2). So in swarm algorithms it is better to have a big number of
processors and a small size of RAM than the contrary.

7.8 Line description

Each <InputFileName> tag describes one input file. The <InputFileName> tag contains one
occurrence of the following tags: <InputFileName> and <NumberLines>. Inside <InputFileName>,
there is also the <line> tag occurring so many times as specified by the <NumberLines> tag.

» The tag <NumberLines> defines the total number of lines (without replications) included
in a given input file.

» The description of each line is bracketed inside a <1ine> tag. The number of <1ine> tags
is defined by <NumberLines> of <InputFileName>.

» The tag <NumberParameterLine> is given only once within one <line> block and defines
the number of model parameters (without replications) contained in that line.

7.9 Replication of lines
7.9.1 Basic properties of line replication

The attribute group of the <line> tag indicates if this line is grouped with other lines forming
a block that may be replicated. There are three basic things that are needed for the full and
non-ambiguous declaration of a group:

(a) the way to distinguish different groups from one another
(b) how to define the beginning and the end of a group

(c) the number of replications

The attribute group may contain several (key)words, the combination of which provides all this
information. Those words may indicate the affiliation to a group (groupl, group2 etc.), the
beginning of a group (groupl: start), and information about the replication number of the
current group.

» Each group corresponds to an integer ID number. This is our way to distinguish different
groups from one another. The affiliation to a group is expressed when the line’s group
attribute contains the string group followed by the group’s ID number and a colon, e.g. if
the ID number of the group is 3, the group attribute contains the string group3:. All lines
that belong to the same group 3 contain the string group3:.

» A block of lines that may be replicated is named after the word group followed by the
number of the block (and is quoted in the group attribute).

» If a line does not belong to a group, then its group attribute is false:

<line group="false">

50 MAGIX manual

» The first line of the input file whose group attribute is not false is the first line of the
first group (groupl:); therefore the group attribute should start with group1, followed by
a colon, a space and the word start (e.g. groupl: _start).

» When the group attribute contains the word start, this means the beginning of a new
group.

» The last line of the input file whose group attribute contains the string groupl: is the last
line of the group.

» The number of the lines that exist between (and including) the first and the last lines of
the group in the registration file is the number of necessary lines that one block of the
group can consist of.

» The number of parameters contained in a single block of the group is equal to the number
of the parameters contained in all the lines of the group, i.e. the sum of the quantities
specified by the <NumberParameterLine> tag of all the lines.

» MAGIX stops looking for further groups, if the next group number does not exists. For
example, the user defines the groups groupl: and group2:. If a group with number 3
(group3:) is not defined, MAGIX stops looking for further groups, even if there is a group
with number 4 (group4:).

Note, if you would like to use more than 100 groups in the registration file you have to
modify the source code, i.e. you have to increase the variable MaxNumberofGroups defined in line
2147 of the file Modules/magix—parts_python/FittingEngine.py.

So we have already explained how we give information about points (a) and (b) in the above
list of requirements. Point (c), i.e. how we can set the number of line replications, is described
in §7.10.

7.9.2 Groups of lines nested innerly of other groups of lines

It is possible that within a group of lines there is another group of lines that may be replicated
as a separate group nested inside the outer group.

» The line’s group attribute has to contain the affiliations to all the groups to which the line
belongs. For example, the following line describes a line in an input file, which belongs
to the groupl and describes additionally the start of a second group called group2:

<line group="groupl:; group2: start, replication = Number_ MolLine">

» The string of the group attribute begins with the affiliation to the outermost group. The
affiliations to all nested groups follow on the right hand side of the string. The affiliation
to the innermost group is the last one within the string of the group attribute (right-most),
see above.

» When there are nested groups, the affiliations to the different groups are separated be-
tween each by a semicolon and a space (;_).

Note, that each group number have to be followed by an colon !

MAGIX manual 51

Sample 13: Part of a registration file with nested loops

<line group="groupl: start, replication = Number_Molecules">
<NumberParameterLine>2</NumberParameterLine>
<Parameter group="false">

</Parameter>

</line>
<line group="groupl:; group2: start, replication = Number_MolLine">

<NumberParameterLine>15</NumberParameterLine>
<Parameter group="false">

</Parameter>
</line>

7.10 Setting the replication number for lines

What'’s left to explain as far as it has to do with the declaration of a group is the way to set
the replication number, i.e. the number of blocks of the same group that are contained in the
input file, one below another.

7.10.1 Properties of the replication number for lines

A line can be replicated as many times as set by the replication number, whose value can be
set in one of the following ways:

» The number of replications may be set equal to a specific integer number > 0. This way
to set the number of replications for a group should be avoided and only be used in the
special case where this number is not included in the input file.

» More flexibility is available by setting the number of replications equal to the value of
another model parameter which is defined in the input file and included in the registration
file of the model. That way you don’t have to edit the registration file every time you want
to remove or add a block to a specific group. You just have to edit the instance, since the
number of replications is actually just another parameter.

This parameter has to be a non-grouped variable if the current group is not nested. If the
group is nested, then this parameter has to be a parameter contained in one of the lines
grouped within the current group. In other words, the replication number of any group
has be defined outside of this group.

In the following, I almost always refer to setting the replication number automatically equal
to one of the parameters included in the parameter list by specifying the parameter name
instead of the actual number of replications (except if I want to give examples of exact number
of replications of a file’s elements). Nevertheless, the replication number of the group is declared
in the same way, no matter if it is given by an integer number or by the name of an (integer)
parameter.

7.10.2 Specify the groups in the registration files

When a group starts in a given line, then the group attribute is a string that contains the
following segments:

1. the string group

52 MAGIX manual

2. the (integer) ID number of the group; this is a successive number, depending on the order
with which the group appears in the current file

3. a colon, a space, the word start, a comma, a space, the word replication, a space, an
equal sign, a space (:_start, replication =_)

4. the name of the parameter that specifies the number of replications of the group that
starts in the current line (or a raw integer number, as explained above)

Example A: If the ID number of the group is N and the name of the parameter that sets the
replication number is pname:

<line group="groupN: start, replication = pname">

Example B: If at a given line a group 3 starts and its replication number is given by parameter
with name pname, but this line already belongs to group 2, which is nested inside
group 1, then this line’s group attribute would be like:

<line group="groupl:; group2:; group3: start, replication = pname">

We see that the segments for each group contain all necessary information for the
given group.
The next line will be:

<line group="groupl:; group2:; group3:">

since it is not in this line that group 3 begins, but this line still belongs to the
groups 1, 2, 3.

7.11 Parameter description
7.11.1 Main tags

» The settings for each parameter are given within the <parameter> tags.

» The number of <Parameter> tags occurring within a <line> tag has to be equal to the
value given in the <NumberParameterLine> tag WITHOUT counting the replications!

» The <Format> tag indicates the format of the parameter value (like FORTRAN notation):

Example A: 15 for integers with maximum 5 digits, a4 for strings with maximum 4 characters,
F15.8 for real numbers with 8 decimal places and maximum 15 — 8 — 1 = 6 integer
places.

Make sure that you define enough integer places! During the fitting algorithm, the value
of the parameter may increase by many magnitudes. If you do not specify enough integer
places, the value of the parameter is replaced by *x*++x» and MAGIX will abort with an
error message! Therefore, we strongly recommend to use Es25.15 for all float numbers.

Due to the fact that MAGIX works in double precision, it is useless to define more than
15 decimal places.

Note, the <Format> tag defines the number of decimal places of a real number. Therefore,
it is possible to define the step size of the x2 function, i.e. the accuracy of the y? determi-
nation. For example, the user sets the format tag of a parameter A to r15.2. Although,
MAGIX works internally with 15 decimal places, the y? value will vary only, if the value
of the parameter A changes within the first two decimal places. Otherwise the x? value
will be the same (if the call of the external model program produces the same y? value for
the same parameter set).

MAGIX manual 53

»

The <LeadingString> and <TrailingString> tags define the leading and the trailing part
of the string that contains the parameter value, respectively.

Example B: If the model parameters are set by command words in the input file of the external fit

>

7.11.

function program, these command words can be inserted in these tags. E.g. imagine
that a quantity, i.e. the frequency, is set in the input file by preceding its value with
the command word FREQUENCY =; then this command word has to be inserted in the
<LeadingString> tag:

<LeadingString>FREQUENCY =</LeadingString>

The (optional, not required) <visible> tag defines the visibility of the current parameter.
If the value of this tag is set to false, the current parameter is not written to the current
input file. The value of this tag can be controlled by a single comparison or a sequence of
comparisons. Here, the phrase “comparison“ means, that the user has to define the name
of another parameter called comparison-name defined in a previous line of the input file
and the so-called comparison-value. If the user defined parameter contains exactly the
comparison-value, the <visible> tag is set to true and the current parameter is written
to the current input file.

Example:

<Visible>ParameterA = branchl</Visible>

In this example, the current parameter will be written to the input file, if the parameter
ParameterA contains exactly the phrase branchl, otherwise the current parameter won'’t
be written to the input file. (Leading and trailing blanks of the comparison-value will be
removed before the comparison.)

Please note, that the ”=” character has to be always given. NO other comparison is pos-
sible.

Additionally, MAGIX offers the possibility to define a sequence of comparisons. The cur-
rent parameter will be written to the current input file, if all comparisons are true. The

@, »

comparisons are separated by the “;” character. So, the comparison-value must not

“@, ”

include the “;” character!

Example:

<Visible>ParameterA = branchl; ParameterB = subbranchl</Visible>

Here, the current parameter will be written to the input file, if the parameter parametera
contains exactly the phrase branchl and if the parameter parameterB contains exactly the
phrase subbranchi, otherwise the current parameter won’t be written to the input file.

Note, if the <visible> tag is not given, MAGIX sets this parameter to visible, i.e. the
current parameter will be written to the current input file.

2 Replication of parameters

The <NumberReplicationParameter> tag defines the number of replications of the param-
eter in the current line. The default value is 1. As for the replication number of lines, the
replication number of parameters can be defined either by an exact integer number or by
the name of a parameter whose value is given in the same file (§7.10).

54 MAGIX manual

Example A: <NumberReplicationParameter>ParameterA</NumberReplicationParameter>

where the value of parameter parametera defines the number of replications of the
current parameter.

» The <parameter> tags contains the attribute group, which is obsolete and always set to

false.

Example B: If you want to repeat the variable parametera two times, then the XML description
in the registration file would look like:

<line group="false">
<NumberReplicationLine> </NumberReplicationLine>

<!-- define number of parameters ——>
<NumberParameterLine>2</NumberParameterLine>

<!-- settings for parameter ParameterA ——>

<Parameter group="false">
<NumberReplicationParameter>2</NumberReplicationParameter>
<Name>ParameterA</Name>
<Format>F4.1</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

<!-- settings for parameter ParameterB ——>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>ParameterB</Name>
<Format>F4.1</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

</line>

This XML description in the registration file can describe the second one of the
following lines of an input file:

// ParameterA ParameterA ParameterB
4.5 1.3 31.0

So replication for parameters is not implemented in the same way as replication for lines.
Nested loops are not allowed and the group attribute has absolutely no meaning. A first or-
der depth loop is only specified by changing the value of <NumberReplicationParameter>.
Additionally, a loop over parameters can exist only over parameters of the same line.

» You can combine the tags <NumberReplicationLine> and <NumberReplicationParameter>

Example C: If you want to repeat a line as many times as given in the parameter named as
NumParamLine, and you also want to repeat the parameter in the current line as many
times as given by the parameter NumParamCol (both NumParamLine and NumParamCol
are given in other lines of the same file), then the corresponding XML description
within the registration file would look like:

MAGIX manual 55

<line group="groupl: start, replication = NumParamLine">

<!-- define number of parameters ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- settings for parameter NumParamCol ——>

<Parameter group="false">
<NumberReplicationParameter>NumParamCol</NumberReplicationParameter>
<ParameterName>TestParameter</ParameterName>
<ParameterFormat>I5</ParameterFormat>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

</line>

7.12 Parameter names

» The name of the model parameter of the current line is defined inside the <Name> tag. The
names of the model parameters used in the XML description of the input file MUST BE
IDENTICAL to the names of the parameters used within the instance (§4).

» The names of the model parameters MUST NOT contain the square brackets and comma
characters ([1 ,). Preferably they should be arbitrary sequences of letter and/or number
characters, as well as the underscore character (). A number digit can as well be the
first character of the name, but it is not recommended.

7.12.1 Parameters of the same name

» Parameters appearing more than once in the same file: There is one exception for the
square brackets. When the first part of the parameter name complies with the afore-
mentioned rules, but the name string is followed by double square brackets ([[1]), this
means that the parameter will appear more than once within the same file. It implies
that this parameter is repeated in arbitrary places of the same file, but keeping the same
value. After the model has been registered, the starting value of such a parameter will be
the one that is given in the first occurrence of the parameter in the instance.

Because of the fact that it is rather inappropriate to set a parameter more than once,
the use of the [[]1] in the name of a parameter is usually used in cases where there
are repeated comment lines in the input file with exactly the same content. An example
is shown in sample input file 14 and the description of the corresponding lines in the
registration file at sample 15. You can see the respective instance in sample 16.

Sample 14: Input file with repeated comment lines of the same content.

"# Comment line"
2.7600000000
"# Comment line"
1
"# Comment line"
0

Sample 15: The description of the lines of input file 14 (part of the registration file).

<line group="false">

56

MAGIX manual

<NumberParameterLine>1</NumberParameterLine>
<Parameter group="false">

<NumberReplicationParameter> </NumberReplicationParameter>
<Name>EmptyLine[[]]</Name>

<Format>Al</Format>

<LeadingString> </LeadingString>

<TrailingString> </TrailingString>

</Parameter>

</line>

<line group="false">
<NumberParameterLine>1</NumberParameterLine>
<Parameter group="false" type="" tab="">

<NumberReplicationParameter/>
<Name>Tbg</Name>
<Format>F20.10</Format>
<LeadingString> </LeadingString>
<TrailingString> </TrailingString>

</Parameter>

</line>

<line group="false">
<NumberParameterLine>1</NumberParameterLine>
<Parameter group="false">

<NumberReplicationParameter> </NumberReplicationParameter>
<Name>EmptyLine[[]]</Name>

<Format>Al</Format>

<LeadingString> </LeadingString>

<TrailingString> </TrailingString>

</Parameter>

</line>

<line group="false">
<NumberParameterLine>1</NumberParameterLine>
<Parameter group="false" type="" tab="">

<NumberReplicationParameter/>
<Name>n_shells</Name>
<Format>I10</Format>
<LeadingString> </LeadingString>
<TrailingString> </TrailingString>

</Parameter>

</line>

<line group="false">
<NumberParameterLine>1</NumberParameterLine>
<Parameter group="false">

<NumberReplicationParameter> </NumberReplicationParameter>
<Name>EmptyLine[[]]</Name>

<Format>Al</Format>

<LeadingString> </LeadingString>

<TrailingString> </TrailingString>

</Parameter>

</line>

<line group="false">
<NumberParameterLine>1</NumberParameterLine>
<Parameter group="false" type="" tab="">

<NumberReplicationParameter/>
<Name>data_tables</Name>
<Format>I10</Format>
<LeadingString> </LeadingString>
<TrailingString> </TrailingString>

</Parameter>

</line>

MAGIX manual 57

Sample 16: The part of the instance for a model with an input file with the lines shown in sample
14, which are described in the sample of registration file 15.

<!-- settings for parameter EmptyLine[[]] —-—>
<Parameter fit="false">
<name>EmptyLine[[]]</name>
<value>"# Comment line"</value>
<error> </error>
<lowlimit> </lowlimit>
<uplimit> </uplimit>
</Parameter>

<!-- settings for parameter Thg ——>
<Parameter fit="false">
<name>Tbg</name>
<value>2.7600</value>
<error> </error>
<lowlimit> </lowlimit>
<uplimit> </uplimit>
</Parameter>

<!-- settings for parameter n_shells ——>
<Parameter fit="false">
<name>n_shells</name>
<value>1</value>
<error> </error>
<lowlimit> </lowlimit>
<uplimit> </uplimit>
</Parameter>

<!-- settings for parameter data_tables ——>
<Parameter fit="false">
<name>data_tables</name>
<value>0</value>
<error> </error>
<lowlimit> </lowlimit>
<uplimit> </uplimit>
</Parameter>

<!-- settings for parameter r_core —-—>
<Parameter fit="true">
<name>r_core</name>
<value>0.1200</value>
<error> </error>
<lowlimit>0.01</lowlimit>
<uplimit>0.5</uplimit>
</Parameter>

<!-- settings for parameter n_e ——>
<Parameter fit="false">
<name>n_e</name>
<value>0.0000</value>
<error> </error>
<lowlimit> </lowlimit>
<uplimit> </uplimit>
</Parameter>

58 MAGIX manual

<!-- settings for parameter T _e ——>
<Parameter fit="false">
<name>T_e</name>
<value>0.0000</value>
<error> </error>
<lowlimit> </lowlimit>
<uplimit> </uplimit>
</Parameter>

» It is highly recommended that no parameters are declared with the same name, unless
there is a serious reason for doing that, i.e. they are actually the same parameters that
should always get the same value. Nevertheless, it is possible to declare two parameters
with the same name, even if there is no reason to do that: In that case, if two or more
parameters appear in the registration file with the same name without the double square
brackets appended, then they are considered as different parameters and have to be
declared in the instance as many times as (and in the order with which) they appear in
the registration file (plus replications).

» Parameters appearing more than once in different files: Same as in the case where two
parameters are declared twice in the same file, with the only difference that no double
square brackets are needed in the parameter name. So, when the same parameter (a
number with exactly the same value) has to appear more than once in two or more
different input files of the same model, then you simply declare them with the same name
(with no double square brackets).

» If a name occurs more than once in the registration file, the values of these parameters
are assigned to parameter names of the registration file according to the order in which
they appear in the instance, i.e. the parameters are filled in from up to down and from
left to right.

Example A: A parameter with name Eigenfrequency occurs three times in the parameter regis-
tration file with values 200, 400 and 700. The input file will include these values in
the following order: 200, 400, 700:

Example B: Parameter param contains the values 1, 2, 3, 4, 5, and 6 may appear in the input file
as follows:

param param param
param param param

Their values will be set in the following order:
123
4 5 6

7.12.2 Special parameters

In a model we want to register for MAGIX, it is possible that one or more of its input files contain
some parameter(s) whose value is implied or set in some other piece (XML file) of MAGIX. We
call such parameters as special parameters, which are distinguished by their names, so we
refer to them as parameters with special names. The special parameters have the following
characteristics, the second of which is partially derived from the first one:

MAGIX manual 59

(a) According to the above definition of the special parameters, it becomes obvious the special
parameters are parameters for which we simply need and use their value. A special param-
eter is not a parameter that could ever be needed to be fitted and it could never happen that
we want its value optimized.

Therefore for those parameters we don’t even need to set neither a fit (all parameters with
special names are assumed to have their fit attribute set to false) nor any upper or lower
limits for its value. In fact, the inclusion of the special parameters in the model instance
really has no meaning.

(b) When registering a model with an input file where the value of a special parameter is set,
then of course we include this parameter in the registration file (so that we have a full
description of the input file), but we don’t include the tag of the respective <Parameter> in
the model instance (because the value of a special parameter has already been given or
calculated elsewhere).

The model instance will contain all other parameters listed in the registration file, but no
special parameter will be included in it.

The following parameter names have a special meaning:

» All parameters whose names start with MAGIXImport and are completed with the name of
one of the tags included in the experimental XML file. See §7.12.3.

» NumberxvalueM, where the last character M of the name has to be substituted by an
integer number indicating the order that a given data file is presented in the experimental
XML file. If a parameter with that name occurs in the registration file, then MAGIX
automatically sets the value of this parameter equal to the number of X points of the
experimental file included in the experimental XML file in the order M.

The value of this parameter is anyway calculated by MAGIX, and is equal to the number
of X points of the data file that lies within the ranges specified for this file.

Example A: If you have two or more experimental data files: Numberxvaluel identifies the number
of X points in the first file described in the experimental XML file; Numberxvalue?2
identifies the number of X points in the second one; and so on.

Example B: Imagine that the experimental XML file with the settings for the import of two exper-
imental data files looks like:

<!-- define number of experimental data files ——>
<NumberExpFiles>2</NumberExpFiles>

<!-- define import settings for 1lst exp. data file ——>
<file>

<!-- define path and name of experimental data file ——>
<FileNamesExpFiles>Filel.dat</FileNamesExpFiles>

<!-- define import filter ——>
<ImportFilter>ascii</ImportFilter>

</file>

<!-- define import settings for 2nd exp. data file ——>

60 MAGIX manual

<file>

<!-- define path and name of experimental data file ——>
<FileNamesExpFiles>File2.dat</FileNamesExpFiles>

<!-- define import filter ——>
<ImportFilter>ascii</ImportFilter>

</file>
Then a parameter named as Numberxvaluel in the registration file will represent the

number of lines in file Filel.dat, and Numberxvalue?2 represents the number of lines
inFile2.dat.

> NumberxvValueAll, is a comma separated list where each element represents the number
of X column values located within the defined ranges of each experimental data file. For
example, the first experimental data file has 10 X column values and the second exper-
imental data file has 234 X column data points. The MAGIX variable NumberxvalueAll
contains the list 10, 234.

7.12.3 Special parameters for the experimental data settings

As special parameters, those parameters who define settings for the data files also comply with
the general characteristics listed in the previous section (§7.12.2).

There are models that use experimental data within their programs. In such a case, the
external model program has to be given some directives in order to import the experimental
data. But for MAGIX this information has already been given in the experimental XML file (§3).
We would like to avoid specifying the settings for importing experimental data twice for similar
cases. With this in mind, a new series of parameters was invented.

» The names of those parameters all begin with the string MAGIXImport, and the corre-
sponding tag of the experimental XML file follows (and closes the parameter name).

» Those parameters do not appear in the instance, but are instead declared and their values
set in the experimental XML file.

» If we have declared some parameter with a name MAGIXImportX, where x is a string
identical to a tag name that is not expected in the experimental XML file, then an error
terminates the program.

For example: Let’s say we have a model’s input file which contains a line with some density
value, the number of observational data files and for each observational data file the size of the
telescope and finally the temperature:

1.41e5 2 3.50 10.43 100.3

The description of this line would look like:

<line group="false">

<!-- define number of replications ——>
<NumberReplicationLine>1</NumberReplicationLine>

MAGIX manual 61

<!-- define number of parameters ——>
<NumberParameterLine>1</NumberParameterLine>

<!-- settings for parameter density ——>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>density</Name>
<Format>esl0.2</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

<!-- settings for parameter MAGIXImportNumberExpFiles ——>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>MAGIXImportNumberExpFiles</Name>
<Format>i3</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

<!-- settings for parameter MAGIXImportNumberExpFiles ——>

<Parameter group="false">
<NumberReplicationParameter>MAGIXImportNumberExpFiles</NumberReplicationParameter>
<Name>MAGIXImportTelescopeSize</Name>
<Format>F6.2</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

<!-- settings for parameter temperature —-—>

<Parameter group="false">
<NumberReplicationParameter></NumberReplicationParameter>
<Name>temperature</Name>
<Format>F7.1</Format>
<LeadingString></LeadingString>
<TrailingString></TrailingString>

</Parameter>

</line>

The model instance would specify the values of the parameters of this line as:

<!-- parameter density —-—>
<Parameter fit="false">
<name>density</name>
<value>1.4e5</value>
<error></error>
<lowlimit>0</lowlimit>
<uplimit>1e99</uplimit>
</Parameter>

<!-- parameter temperature —-—>

<Parameter fit="false">
<name>temperature</name>
<value>100.3</value>
<error></error>

62 MAGIX manual

<lowlimit>0</lowlimit>
<uplimit>1e99</uplimit>
</Parameter>

We see that there is no reference to the number of observational files or the telescope size,
even if they are supposed to exist in the input file that contains this line. Instead of the
model instance, this information is given in the experimental XML file. If the model instance
were to refer to two observational data files, then MAGIX would copy this information from the
experimental XML file, where it has already been specified:

<!-- define number of experimental data files ——>
<NumberExpFiles>2</NumberExpFiles>

<!-- define import settings for 1st exp. data file —-—>
<file>

<!-- define path and name of experimental data file ——>
<FileNamesExpFiles>test/345.cso</FileNamesExpFiles>

<!-- define import filter ——>
<ImportFilter>automatic</ImportFilter>

<!-- define number of data ranges -—>
<NumberExpRanges>2</NumberExpRanges>

<!-- define parameters for each data ranges ——>
<FrequencyRange>
<MinExpRange>326001</MinExpRange>
<MaxExpRange>350000</MaxExpRange>
<StepFrequency>1.0</StepFrequency>
<BackgroundTemperature>2.7</BackgroundTemperature>
<TemperatureSlope>0.0</TemperatureSlope>
</FrequencyRange>

<FrequencyRange>
<MinExpRange>350001</MinExpRange>
<MaxExpRange>360000</MaxExpRange>
<StepFrequency>0.8</StepFrequency>
<BackgroundTemperature>2.8</BackgroundTemperature>
<TemperatureSlope>1.0</TemperatureSlope>
</FrequencyRange>

<!-- define size of telescope ——>
<TelescopeSize>3.5</TelescopeSize>
</file>
<!-- define import settings for 2nd exp. data file —-—>
<file>
<!-- define path and name of experimental data file ——>

<FileNamesExpFiles>magix_import_vars/345.cso</FileNamesExpFiles>

MAGIX manual 63

<!-- define import filter —-—>
<ImportFilter>automatic</ImportFilter>

<!-- define number of data ranges ——>
<NumberExpRanges>2</NumberExpRanges>

<!-- define parameters for each data ranges ——>
<FrequencyRange>
<MinExpRange>326001</MinExpRange>
<MaxExpRange>350000</MaxExpRange>
<StepFrequency>1.0</StepFrequency>
<BackgroundTemperature>2.7</BackgroundTemperature>
<TemperatureSlope>0.0</TemperatureSlope>
</FrequencyRange>

<FrequencyRange>
<MinExpRange>350001</MinExpRange>
<MaxExpRange>360000</MaxExpRange>
<StepFrequency>0.8</StepFrequency>
<BackgroundTemperature>2.8</BackgroundTemperature>
<TemperatureSlope>1.0</TemperatureSlope>
</FrequencyRange>

<!-- define size of telescope ——>
<TelescopeSize>10.4</TelescopeSize>
</file>

7.13 Output file settings

In order to determine the value of x2? the user has to define how MAGIX should read in the
output file(s) of the external model program. This is done in the registration xml-file as well.

The tag <a11In0OneOutputFile> indicates if all output of the external model program is stored
in one big output file "yes“ or not "no“. So, if the user sets the tag <A11InoOneOutputFile> to "yes”
MAGIX assumes that the external model program produces only one output file independent
of the number of experimental data files. MAGIX expects that the values of the model function
are written into one file where the first line corresponds to the first line of the first experimental
data file etc. For example, the user would like to use two experimental data files which contain
the transmission for n data points from 1 - 3 MHz in the first file and for m data points
from 5 - 6 MHz in the second experimental data file, respectively. If the user sets the tag
<Al1lInOneOutputFile> to "yes“, MAGIX expects that the external model program produces one
file where the first n lines corresponds to the transmission from 1 - 3 MHz and the next m lines
corresponds to the transmission from 5 - 6 MHz.

Note, if the user sets the tag <Al1InOneOutputFile> to “yes“ the INTERPOLATION routine
which is included in MAGIX can not be used!

MAGIX can handle more than one output files. The number of output files produced by the
external model program is given by the tag <NumberOutputFiles>, where the content has to be
always an integer > 0. If the user sets the tag <A11InOneOutputFile> to ”yes“ the number of
output files is automatically set to 1.

Note, if the content of the tag <NumberColumnsy> is larger than 1 the external model program
has to produce ALWAYS output file(s) which has (have) the same number of Y columns. For

64 MAGIX manual

example, the user sets the tag <NumberColumnsY> to 2 and the external model program pro-
duces one output file. Then the output file of the external model program has to contain two Y
columns as well.

If the external model program produces always the same number of output files than experi-
mental data files, the tag <NumberOutputFiles> has to be set to "MAGIXImportNumberExpFiles“.
In this case, the user has to define only one output file where MAGIX expects that the name
of the output file is expanded by ”_“ followed by the number of the output file. For example,
the user would like to use two experimental data files. The name of the output file is set
to “output.dat®. MAGIX expects that the output of the external model program is written to
the files "output_1l.dat“ and “output_2.dat“, where the file "output_1.dat“ describes the first
experimental data file and "output_2.dat“ the second data file.

In any other case, the tag <outputFile> has to occur as many times as the number given
by <NumberOutputFiles>.

Each <outputFile> tag contains the following settings for each output file.

» The tag <onlyyColumn> defines if the output file(s) include(s) only the values of the model
function (Y column) without the corresponding X column values ”yes” or if the output
file(s) contain(s) the X column values as well “no“. If the tag <onlyvyColumn> includes a
content unequal to yes, MAGIX reads in the X column as well as the Y column values of
the model function and checks if the X column values in the output file(s) of the external
model program correspond to the given X column values defined in the observation file(s).
If the X column values are not identical, MAGIX performs always a simple interpolation
which is controlled by the tags <InterpolationMethod> and <NormalizationFlag>, see
below. In order to prevent an interpolation of the model function the user has to set the
tag <onlyYColumn> to "yes“.

Please note, interpolation is neither possible if all output files are stored in one big output
file, i.e., the tag <a11InOneOutputFile> is set to "yes“.

» The tag <outputFileFormat> defines the format of the output file. The user can choose
one of the following commands: ascii (default) and dat (for an ASCII file) and fits (for
a FITS file). Additionally, the command auto and automatic selects the format of the
current output file by the ending of the file name; i.e. if the file name ends in .fits,
MAGIX expects a FITS file; otherwise MAGIX expects an ASCII file.

» If the tag <outputFileFormat> is set to ascii or dat MAGIX reads in the contents of the
tag <NumberHeaderLines> which defines the number of header lines. These lines at the
beginning of the output file(s) are ignored during the import of the output file(s). If the
tag is empty or not defined (default), MAGIX expects no header lines.

» Ifthe tag <outputFileFormat>is setto ascii or dat MAGIX reads the tag <CharacterForComment s>

which defines a character, with which a comment begins in the lines of the output file.
If the tag is empty or not defined (default), MAGIX expects no comments in the output
file(s).

» The tag <valueEmptyoutputFile> defines the value of the model function if the output
file(s) is empty. If the tag is empty or not defined (default), MAG